{"title":"Origin and Early Evolution of Echinoderms","authors":"Imran A. Rahman, Samuel Zamora","doi":"10.1146/annurev-earth-031621-113343","DOIUrl":null,"url":null,"abstract":"Echinoderms are a major group (phylum) of invertebrate animals with a rich fossil record stretching back to the Cambrian period, approximately 518 million years ago. While all modern species are characterized by pentaradial (i.e., fivefold) symmetry, Cambrian echinoderms also include taxa with different types of symmetry (e.g., bilateral symmetry). These distinct forms were present from very early in the phylum's history, demonstrating that the initial diversification of echinoderm body plans was extremely rapid. The phylogenetic relationships of Cambrian echinoderms have long been debated, hindering efforts to reconstruct the evolution of the phylum, but recent analyses have consistently recovered bilaterally symmetrical forms as the earliest-diverging echinoderms. This reveals the sequence of character acquisition in echinoderm evolution, indicating that radial symmetry is a derived character of the group, which evolved after the acquisition of a mineralized skeleton. Cambrian echinoderms were adapted to diverse modes of life, with ecology an important factor shaping their early evolution. However, the reasons why echinoderms evolved their unique pentaradial body plan remain unclear. ▪ The Cambrian fossil record provides valuable insights into the origin and early evolution of echinoderms over half a billion years ago. ▪ Cambrian echinoderms were morphologically diverse, with several extinct groups exhibiting character combinations that distinguish them from living species. ▪ Phylogenetic analyses of bilateral, asymmetrical, triradial, and pentaradial fossils have allowed us to decipher the assembly of the modern echinoderm body plan. ▪ Echinoderms became ecologically diverse early in their history, with varied modes of feeding, locomotion, and attachment.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8034,"journal":{"name":"Annual Review of Earth and Planetary Sciences","volume":"17 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Earth and Planetary Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-earth-031621-113343","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Echinoderms are a major group (phylum) of invertebrate animals with a rich fossil record stretching back to the Cambrian period, approximately 518 million years ago. While all modern species are characterized by pentaradial (i.e., fivefold) symmetry, Cambrian echinoderms also include taxa with different types of symmetry (e.g., bilateral symmetry). These distinct forms were present from very early in the phylum's history, demonstrating that the initial diversification of echinoderm body plans was extremely rapid. The phylogenetic relationships of Cambrian echinoderms have long been debated, hindering efforts to reconstruct the evolution of the phylum, but recent analyses have consistently recovered bilaterally symmetrical forms as the earliest-diverging echinoderms. This reveals the sequence of character acquisition in echinoderm evolution, indicating that radial symmetry is a derived character of the group, which evolved after the acquisition of a mineralized skeleton. Cambrian echinoderms were adapted to diverse modes of life, with ecology an important factor shaping their early evolution. However, the reasons why echinoderms evolved their unique pentaradial body plan remain unclear. ▪ The Cambrian fossil record provides valuable insights into the origin and early evolution of echinoderms over half a billion years ago. ▪ Cambrian echinoderms were morphologically diverse, with several extinct groups exhibiting character combinations that distinguish them from living species. ▪ Phylogenetic analyses of bilateral, asymmetrical, triradial, and pentaradial fossils have allowed us to decipher the assembly of the modern echinoderm body plan. ▪ Echinoderms became ecologically diverse early in their history, with varied modes of feeding, locomotion, and attachment.Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 52 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
Since its establishment in 1973, the Annual Review of Earth and Planetary Sciences has been dedicated to providing comprehensive coverage of advancements in the field. This esteemed publication examines various aspects of earth and planetary sciences, encompassing climate, environment, geological hazards, planet formation, and the evolution of life. To ensure wider accessibility, the latest volume of the journal has transitioned from a gated model to open access through the Subscribe to Open program by Annual Reviews. Consequently, all articles published in this volume are now available under the Creative Commons Attribution (CC BY) license.