Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Deva D Chan, Farshid Guilak, Robert L Sah, Sarah Calve
{"title":"Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues.","authors":"Deva D Chan, Farshid Guilak, Robert L Sah, Sarah Calve","doi":"10.1146/annurev-bioeng-073123-120541","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":12.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-073123-120541","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular cartilage and synovial fluid, where it contributes to tissue structure and lubrication. An understanding of how HA contributes to the structure of other musculoskeletal tissues, including muscle, bone, tendon, and intervertebral discs, is growing. In addition, the use of HA-based therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review, we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We use what is known and unknown to motivate new lines of inquiry into HA biology within musculoskeletal tissues and in the mechanobiology governing HA metabolism by suggesting questions that remain regarding the relationship and interaction between biological and mechanical roles of HA in musculoskeletal health and disease.

透明质酸的机械生物学:连接肌肉骨骼组织的生物力学和生物活性。
透明质酸(HA)在关节软骨和滑液中发挥着公认的机械和生物作用,有助于组织结构和润滑。人们对透明质酸如何促进肌肉、骨骼、肌腱和椎间盘等其他肌肉骨骼组织结构的了解也在不断加深。此外,使用基于 HA 的疗法来恢复受损组织的做法也越来越普遍。然而,生物力学刺激与肌肉骨骼组织中 HA 合成、降解和信号传导之间的关系仍未得到充分研究,这限制了 HA 在再生医学中的应用。在本综述中,我们将讨论内源性 HA 在肌肉骨骼组织中的各种作用和意义。我们利用已知和未知的知识,提出了有关 HA 在肌肉骨骼健康和疾病中的生物学作用和机械作用之间的关系和相互作用的问题,从而激发了对肌肉骨骼组织内 HA 生物学和 HA 代谢机械生物学的新的研究方向。生物医学工程年度综述》第 26 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信