A fixed point theorem for isometries on a metric space

IF 1 3区 数学 Q1 MATHEMATICS
Andrzej Wiśnicki
{"title":"A fixed point theorem for isometries on a metric space","authors":"Andrzej Wiśnicki","doi":"10.1515/forum-2023-0193","DOIUrl":null,"url":null,"abstract":"We show that if <jats:italic>X</jats:italic> is a complete metric space with uniform relative normal structure and <jats:italic>G</jats:italic> is a subgroup of the isometry group of <jats:italic>X</jats:italic> with bounded orbits, then there is a point in <jats:italic>X</jats:italic> fixed by every isometry in <jats:italic>G</jats:italic>. As a corollary, we obtain a theorem of U. Lang (2013) concerning injective metric spaces. A few applications of this theorem are given to the problems of inner derivations. In particular, we show that if <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0193_eq_0087.png\" /> <jats:tex-math>{L_{1}(\\mu)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an essential Banach <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0193_eq_0086.png\" /> <jats:tex-math>{L_{1}(G)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bimodule, then any continuous derivation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>δ</m:mi> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:msub> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:msub> <m:mi>L</m:mi> <m:mi mathvariant=\"normal\">∞</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>μ</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0193_eq_0136.png\" /> <jats:tex-math>{\\delta:L_{1}(G)\\rightarrow L_{\\infty}(\\mu)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is inner. This extends a theorem of B. E. Johnson (1991) asserting that the convolution algebra <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msub> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>G</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0193_eq_0086.png\" /> <jats:tex-math>{L_{1}(G)}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is weakly amenable if <jats:italic>G</jats:italic> is a locally compact group.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if X is a complete metric space with uniform relative normal structure and G is a subgroup of the isometry group of X with bounded orbits, then there is a point in X fixed by every isometry in G. As a corollary, we obtain a theorem of U. Lang (2013) concerning injective metric spaces. A few applications of this theorem are given to the problems of inner derivations. In particular, we show that if L 1 ( μ ) {L_{1}(\mu)} is an essential Banach L 1 ( G ) {L_{1}(G)} -bimodule, then any continuous derivation δ : L 1 ( G ) L ( μ ) {\delta:L_{1}(G)\rightarrow L_{\infty}(\mu)} is inner. This extends a theorem of B. E. Johnson (1991) asserting that the convolution algebra L 1 ( G ) {L_{1}(G)} is weakly amenable if G is a locally compact group.
度量空间上等距物的定点定理
我们证明,如果 X 是具有均匀相对法向结构的完全度量空间,而 G 是 X 的有界轨道等值群的一个子群,那么 X 中存在一个被 G 中的每个等值固定的点。这个定理在内层衍生问题上有一些应用。特别是,我们证明了如果 L 1 ( μ ) {L_{1}(\mu)} 是一个本质的巴纳赫 L 1 ( G ) {L_{1}(G)} - 二模子,那么任何连续求导 δ : L 1 ( G ) → L ∞ ( μ ) {\delta:L_{1}(G)\rightarrow L_{\infty}(\mu)} 都是内求导。这扩展了 B. E. Johnson (1991) 的一个定理,即如果 G 是局部紧凑群,卷积代数 L 1 ( G ) {L_{1}(G)} 是弱可变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信