Generalized orthogonal measures on the space of unital completely positive maps

IF 1 3区 数学 Q1 MATHEMATICS
Angshuman Bhattacharya, Chaitanya J. Kulkarni
{"title":"Generalized orthogonal measures on the space of unital completely positive maps","authors":"Angshuman Bhattacharya, Chaitanya J. Kulkarni","doi":"10.1515/forum-2023-0330","DOIUrl":null,"url":null,"abstract":"A classical result by Effros connects the barycentric decomposition of a state on a C*-algebra to the disintegration theory of the GNS representation of the state with respect to an orthogonal measure on the state space of the C*-algebra. In this note, we take this approach to the space of unital completely positive maps on a C*-algebra with values in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>B</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>H</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0330_eq_0154.png\" /> <jats:tex-math>{B(H)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, connecting the barycentric decomposition of the unital completely positive map and the disintegration theory of the minimal Stinespring dilation of the same. This generalizes Effros’ work in the non-commutative setting. We do this by introducing a special class of barycentric measures which we call <jats:italic>generalized orthogonal</jats:italic> measures. We end this note by mentioning some examples of <jats:italic>generalized orthogonal</jats:italic> measures.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"145 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0330","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A classical result by Effros connects the barycentric decomposition of a state on a C*-algebra to the disintegration theory of the GNS representation of the state with respect to an orthogonal measure on the state space of the C*-algebra. In this note, we take this approach to the space of unital completely positive maps on a C*-algebra with values in B ( H ) {B(H)} , connecting the barycentric decomposition of the unital completely positive map and the disintegration theory of the minimal Stinespring dilation of the same. This generalizes Effros’ work in the non-commutative setting. We do this by introducing a special class of barycentric measures which we call generalized orthogonal measures. We end this note by mentioning some examples of generalized orthogonal measures.
单位完全正映射空间上的广义正交测量
埃夫罗斯(Effros)的一个经典结果将 C* 代数上的状态的重心分解与状态的 GNS 表示的解体理论联系起来,而 GNS 表示是关于 C* 代数的状态空间上的正交度量的。在本注释中,我们将这一方法应用于 C* 代数上在 B ( H ) {B(H)}中取值的单元全正映射空间,将单元全正映射的重心分解与同一映射的最小施蒂尼斯普林扩张的解体理论联系起来。这概括了埃弗罗斯在非交换背景下的工作。为此,我们引入了一类特殊的重心度量,我们称之为广义正交度量。最后,我们举几个广义正交度量的例子来结束本说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信