On the modular isomorphism problem for groups of nilpotency class 2 with cyclic center

IF 1 3区 数学 Q1 MATHEMATICS
Diego García-Lucas, Leo Margolis
{"title":"On the modular isomorphism problem for groups of nilpotency class 2 with cyclic center","authors":"Diego García-Lucas, Leo Margolis","doi":"10.1515/forum-2023-0237","DOIUrl":null,"url":null,"abstract":"We show that the modular isomorphism problem has a positive answer for groups of nilpotency class 2 with cyclic center, i.e., that for such <jats:italic>p</jats:italic>-groups <jats:italic>G</jats:italic> and <jats:italic>H</jats:italic> an isomorphism between the group algebras <jats:italic>FG</jats:italic> and <jats:italic>FH</jats:italic> implies an isomorphism of the groups <jats:italic>G</jats:italic> and <jats:italic>H</jats:italic> for <jats:italic>F</jats:italic> the field of <jats:italic>p</jats:italic> elements. For groups of odd order this implication is also proven for <jats:italic>F</jats:italic> being any field of characteristic <jats:italic>p</jats:italic>. For groups of even order we need either to make an additional assumption on the groups or on the field.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0237","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the modular isomorphism problem has a positive answer for groups of nilpotency class 2 with cyclic center, i.e., that for such p-groups G and H an isomorphism between the group algebras FG and FH implies an isomorphism of the groups G and H for F the field of p elements. For groups of odd order this implication is also proven for F being any field of characteristic p. For groups of even order we need either to make an additional assumption on the groups or on the field.
关于具有循环中心的无钾类 2 群的模态同构问题
我们证明了模同构问题对于具有循环中心的无幂级数 2 的群有一个肯定的答案,即对于这样的 p 群 G 和 H,群代数 FG 和 FH 之间的同构意味着群 G 和 H 对于 p 元素域 F 的同构。对于奇数阶群,F 是任何特征 p 的域时,这一蕴涵也可得到证明。对于偶数阶群,我们需要对群或域做一个额外的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信