Multiplicity of solutions for a singular system with sign-changing potential

IF 1 3区 数学 Q1 MATHEMATICS
Wentao Lin, Yilan Wei
{"title":"Multiplicity of solutions for a singular system with sign-changing potential","authors":"Wentao Lin, Yilan Wei","doi":"10.1515/forum-2023-0345","DOIUrl":null,"url":null,"abstract":"This paper focuses on a singular system with a sign-changing potential in Γ, a bounded domain with a Lipschitz boundary in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℝ</m:mi> <m:mi>d</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0345_eq_0345.png\" /> <jats:tex-math>{\\mathbb{R}^{d}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. By imposing appropriate conditions on the weight potential, which is allowed to change sign, we establish the existence of multiple solutions using the shape optimization approach. This study represents one of the earliest endeavors to explore and analyze the occurrence of multiple solutions in fractional singular systems involving sign-changing potentials. By explicitly addressing this particular aspect, our paper contributes significantly to the limited body of literature that exists in this specific field.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"19 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0345","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on a singular system with a sign-changing potential in Γ, a bounded domain with a Lipschitz boundary in d {\mathbb{R}^{d}} . By imposing appropriate conditions on the weight potential, which is allowed to change sign, we establish the existence of multiple solutions using the shape optimization approach. This study represents one of the earliest endeavors to explore and analyze the occurrence of multiple solutions in fractional singular systems involving sign-changing potentials. By explicitly addressing this particular aspect, our paper contributes significantly to the limited body of literature that exists in this specific field.
具有符号变化势能的奇异系统解的多重性
本文的研究重点是一个在 Γ 中具有符号变化势能的奇异系统,Γ 是一个在 ℝ d {\mathbb{R}^{d} 中具有 Lipschitz 边界的有界域。} .通过对允许改变符号的权势施加适当的条件,我们利用形状优化方法确定了多解的存在性。这项研究是探索和分析涉及符号变化势的分数奇异系统中多解现象的最早尝试之一。通过明确探讨这一特定方面,我们的论文为这一特定领域现有的有限文献做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信