Regularity of fractional heat semigroups associated with Schrödinger operators on Heisenberg groups

IF 1 3区 数学 Q1 MATHEMATICS
Chuanhong Sun, Pengtao Li, Zengjian Lou
{"title":"Regularity of fractional heat semigroups associated with Schrödinger operators on Heisenberg groups","authors":"Chuanhong Sun, Pengtao Li, Zengjian Lou","doi":"10.1515/forum-2023-0285","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>L</m:mi> <m:mo>=</m:mo> <m:mrow> <m:mrow> <m:mo>-</m:mo> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:msup> <m:mi>ℍ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:mrow> <m:mo>+</m:mo> <m:mi>V</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0800.png\" /> <jats:tex-math>{L=-{\\Delta}_{\\mathbb{H}^{n}}+V}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a Schrödinger operator on Heisenberg groups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0890.png\" /> <jats:tex-math>{\\mathbb{H}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:msup> <m:mi>ℍ</m:mi> <m:mi>n</m:mi> </m:msup> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_1058.png\" /> <jats:tex-math>{{\\Delta}_{\\mathbb{H}^{n}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the sub-Laplacian, the nonnegative potential <jats:italic>V</jats:italic> belongs to the reverse Hölder class <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>B</m:mi> <m:mrow> <m:mi mathvariant=\"script\">𝒬</m:mi> <m:mo>/</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0748.png\" /> <jats:tex-math>{B_{\\mathcal{Q}/2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Here <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒬</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0895.png\" /> <jats:tex-math>{\\mathcal{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the homogeneous dimension of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>ℍ</m:mi> <m:mi>n</m:mi> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0890.png\" /> <jats:tex-math>{\\mathbb{H}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we introduce the fractional heat semigroups <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>L</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:mrow> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0954.png\" /> <jats:tex-math>{\\{e^{-tL^{\\alpha}}\\}_{t&gt;0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0852.png\" /> <jats:tex-math>{\\alpha&gt;0}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, associated with <jats:italic>L</jats:italic>. By the fundamental solution of the heat equation, we estimate the gradient and the time-fractional derivatives of the fractional heat kernel <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>K</m:mi> <m:mrow> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mi>L</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo>,</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0795.png\" /> <jats:tex-math>{K_{\\alpha,t}^{L}(\\,\\cdot\\,,\\cdot\\,)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively. As an application, we characterize the space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mi>BMO</m:mi> <m:mi>L</m:mi> <m:mi>γ</m:mi> </m:msubsup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msup> <m:mi>ℍ</m:mi> <m:mi>n</m:mi> </m:msup> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0897.png\" /> <jats:tex-math>{\\mathrm{BMO}_{L}^{\\gamma}(\\mathbb{H}^{n})}</jats:tex-math> </jats:alternatives> </jats:inline-formula> via <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:msup> <m:mi>e</m:mi> <m:mrow> <m:mo>-</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>⁢</m:mo> <m:msup> <m:mi>L</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:mrow> </m:msup> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0285_eq_0954.png\" /> <jats:tex-math>{\\{e^{-tL^{\\alpha}}\\}_{t&gt;0}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"21 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0285","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let L = - Δ n + V {L=-{\Delta}_{\mathbb{H}^{n}}+V} be a Schrödinger operator on Heisenberg groups n {\mathbb{H}^{n}} , where Δ n {{\Delta}_{\mathbb{H}^{n}}} is the sub-Laplacian, the nonnegative potential V belongs to the reverse Hölder class B 𝒬 / 2 {B_{\mathcal{Q}/2}} . Here 𝒬 {\mathcal{Q}} is the homogeneous dimension of n {\mathbb{H}^{n}} . In this article, we introduce the fractional heat semigroups { e - t L α } t > 0 {\{e^{-tL^{\alpha}}\}_{t>0}} , α > 0 {\alpha>0} , associated with L. By the fundamental solution of the heat equation, we estimate the gradient and the time-fractional derivatives of the fractional heat kernel K α , t L ( , ) {K_{\alpha,t}^{L}(\,\cdot\,,\cdot\,)} , respectively. As an application, we characterize the space BMO L γ ( n ) {\mathrm{BMO}_{L}^{\gamma}(\mathbb{H}^{n})} via { e - t L α } t > 0 {\{e^{-tL^{\alpha}}\}_{t>0}} .
与海森堡群上薛定谔算子相关的分数热半群的正则性
设 L = - Δ ℍ n + V {L=-{\Delta}_{\mathbb{H}^{n}}+V} 是海森堡群 ℍ n {{\mathbb{H}^{n}} 上的薛定谔算子,其中 Δ ℍ n {{\Delta}_{\mathbb{H}^{n}} 是子拉普拉斯。 其中 Δ ℍ n {{Delta}_{mathbb{H}^{n}} 是子拉普拉卡,非负势 V 属于反向荷尔德类 B 𝒬 / 2 {B_{\mathcal{Q}/2}} 。} .这里𝒬 {\mathcal{Q}} 是ℍ n {\mathbb{H}^{n} 的同次元维度。} .在本文中,我们引入分数热半群 { e - t L α } t > 0 {\{e^{-tL^{\alpha}}\}_{t>0}} 。 , α > 0 {\alpha>0} , 与 L 相关联。 通过热方程的基本解,我们分别估计了分数热核 K α , t L ( ⋅ , ⋅ ) {K_\{alpha,t}^{L}(\,\cdot\,,\cdot\,)} 的梯度和时间分数导数。作为应用,我们通过{ e - t L α } t > 0 {\{e^{-tL^{\alpha}}}_{t>0}} 来描述空间 BMO L γ ( ℍ n ) {\mathrm{BMO}_{L}^{gamma}(\mathbb{H}^{n})} 。 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信