N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Taolin Zhao, Xinlei Zhang, Zezheng Liu, Qingyuan Gu, Xiaoyu Jin, Saihu Xie, Shuai Liu
{"title":"N-Doped Porous Carbon Encapsulated MnFe2O4 Nanoparticles as Advanced Anodes for Li-Ion Batteries","authors":"Taolin Zhao,&nbsp;Xinlei Zhang,&nbsp;Zezheng Liu,&nbsp;Qingyuan Gu,&nbsp;Xiaoyu Jin,&nbsp;Saihu Xie,&nbsp;Shuai Liu","doi":"10.1007/s13391-023-00477-6","DOIUrl":null,"url":null,"abstract":"<div><p>Transition metal oxide MnFe<sub>2</sub>O<sub>4</sub> is considered a promising anode material for Li-ion batteries owing to its high theoretical specific capacity. However, this material has two bottleneck problems, i.e., poor conductivity and serious volume expansion during cycling. In this work, MnFe<sub>2</sub>O<sub>4</sub> nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. As a result, the N-doped carbon matrix enhances the electronic conductivity of the composites. The special porous structure increases the contact area between the electrode material and the electrolyte and facilitates the rapid infiltration of the electrolyte. At a calcination temperature of 400 °C, the MnFe<sub>2</sub>O<sub>4</sub>/C composite shows a high initial discharge specific capacity of 1207.0 mAh g<sup>−1</sup> at 0.2 A g<sup>−1</sup> and retains a reversible specific capacity of 1100.1 mAh g<sup>−1</sup> after 200 cycles. The simple design of metal oxide nanomaterials encapsulated in N-doped porous carbon provides a new direction for improving the electrochemical performance of electrode materials for Li-ion batteries.</p><h3>Graphical Abstract</h3><p>A brief abstract: MnFe<sub>2</sub>O<sub>4</sub> nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. At a calcination temperature of 400 °C, the MnFe<sub>2</sub>O<sub>4</sub>/C composite shows a high initial discharge specific capacity of 1207.0 mAh g<sup>−1</sup> at 0.2 C and retains a reversible specific capacity of 1100.1 mAh g<sup>−1</sup> after 200 cycles.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"317 - 325"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00477-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxide MnFe2O4 is considered a promising anode material for Li-ion batteries owing to its high theoretical specific capacity. However, this material has two bottleneck problems, i.e., poor conductivity and serious volume expansion during cycling. In this work, MnFe2O4 nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. As a result, the N-doped carbon matrix enhances the electronic conductivity of the composites. The special porous structure increases the contact area between the electrode material and the electrolyte and facilitates the rapid infiltration of the electrolyte. At a calcination temperature of 400 °C, the MnFe2O4/C composite shows a high initial discharge specific capacity of 1207.0 mAh g−1 at 0.2 A g−1 and retains a reversible specific capacity of 1100.1 mAh g−1 after 200 cycles. The simple design of metal oxide nanomaterials encapsulated in N-doped porous carbon provides a new direction for improving the electrochemical performance of electrode materials for Li-ion batteries.

Graphical Abstract

A brief abstract: MnFe2O4 nanoparticles were successfully encapsulated in the matrix of N-doped porous carbon via a sol–gel method. At a calcination temperature of 400 °C, the MnFe2O4/C composite shows a high initial discharge specific capacity of 1207.0 mAh g−1 at 0.2 C and retains a reversible specific capacity of 1100.1 mAh g−1 after 200 cycles.

Abstract Image

掺杂 N 的多孔碳封装 MnFe2O4 纳米粒子作为锂离子电池的先进阳极
过渡金属氧化物 MnFe2O4 具有很高的理论比容量,因此被认为是一种很有前途的锂离子电池阳极材料。然而,这种材料存在两个瓶颈问题,即导电性差和循环过程中体积膨胀严重。在这项工作中,通过溶胶-凝胶法成功地将 MnFe2O4 纳米颗粒封装在掺杂 N 的多孔碳基质中。因此,掺杂 N 的碳基质增强了复合材料的电子导电性。特殊的多孔结构增加了电极材料与电解液的接触面积,有利于电解液的快速渗入。在 400 °C 的煅烧温度下,MnFe2O4/C 复合材料在 0.2 A g-1 的条件下显示出 1207.0 mAh g-1 的高初始放电比容量,并在 200 次循环后保持 1100.1 mAh g-1 的可逆比容量。通过简单的设计将金属氧化物纳米材料封装在掺杂N的多孔碳中,为提高锂离子电池电极材料的电化学性能提供了新的方向。图文摘要简要摘要:通过溶胶-凝胶法成功地将MnFe2O4纳米颗粒封装在掺杂N的多孔碳基体中。在煅烧温度为 400 °C 时,MnFe2O4/C 复合材料在 0.2 C 下显示出 1207.0 mAh g-1 的高初始放电比容量,并在 200 次循环后保持 1100.1 mAh g-1 的可逆比容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信