Inversion formula for an integral geometry problem over surfaces of revolution

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Zekeriya Ustaoglu
{"title":"Inversion formula for an integral geometry problem over surfaces of revolution","authors":"Zekeriya Ustaoglu","doi":"10.1111/sapm.12664","DOIUrl":null,"url":null,"abstract":"<p>An integral geometry problem is considered on a family of <math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional surfaces of revolution whose vertices lie on a hyperplane and directions of symmetry axes are fixed and orthogonal to this plane, in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R} ^{n+1}$</annotation>\n </semantics></math>. More precisely, the reconstruction of a function <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(\\mathbf {x,}y)$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbf {x}\\in \\mathbb {R} ^{n}$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$y\\in \\mathbb {R}$</annotation>\n </semantics></math>, from the integrals of the form <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n <mi>d</mi>\n <mi>x</mi>\n </mrow>\n <annotation>$f(\\mathbf {x,}y) d\\mathbf {x}$</annotation>\n </semantics></math> extended over a chosen side of all surfaces of revolution of a given family is investigated. Unlike the usual Radon transform, the integrals considered here are not taken with respect to the surface area element. A Fourier slice identity and a backprojection-type inversion formula are obtained with a method based on the Fourier and Hankel transforms. The reconstruction procedure and some analytical and numerical implementations of the obtained inversion formulas in the cases of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n=1$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math> are provided.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12664","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

An integral geometry problem is considered on a family of n $n$ -dimensional surfaces of revolution whose vertices lie on a hyperplane and directions of symmetry axes are fixed and orthogonal to this plane, in R n + 1 $\mathbb {R} ^{n+1}$ . More precisely, the reconstruction of a function f ( x , y ) $f(\mathbf {x,}y)$ , x R n $\mathbf {x}\in \mathbb {R} ^{n}$ , y R $y\in \mathbb {R}$ , from the integrals of the form f ( x , y ) d x $f(\mathbf {x,}y) d\mathbf {x}$ extended over a chosen side of all surfaces of revolution of a given family is investigated. Unlike the usual Radon transform, the integrals considered here are not taken with respect to the surface area element. A Fourier slice identity and a backprojection-type inversion formula are obtained with a method based on the Fourier and Hankel transforms. The reconstruction procedure and some analytical and numerical implementations of the obtained inversion formulas in the cases of n = 1 $n=1$ and n = 2 $n=2$ are provided.

Abstract Image

旋转曲面上积分几何问题的反演公式
在 Rn+1$\mathbb {R} ^{n+1}$中考虑了一个 n 维旋转曲面族的积分几何问题,该曲面族的顶点位于一个超平面上,对称轴的方向固定且与该平面正交。更确切地说,函数 f(x,y)$f(\mathbf {x,}y)$,x∈Rn$\mathbf {x}\\mathbb {R} ^{n}$,y∈R$y\\mathbb {R}$的重构、的积分形式 f(x,y)dx$f(\mathbf {x,}y) d\mathbf {x}$ 扩展到给定族的所有旋转曲面的一个选定边上的问题进行了研究。与通常的拉顿变换不同,这里考虑的积分不是针对表面积元素的。通过基于傅立叶变换和汉克尔变换的方法,获得了傅立叶切片特性和反投影式反演公式。在 n=1$n=1$ 和 n=2$n=2$ 的情况下,提供了重建程序以及所获反演公式的一些分析和数值实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信