Advances in metal-organic framework-derived single-atom catalysts for biomedicine

IF 9.9 2区 材料科学 Q1 Engineering
{"title":"Advances in metal-organic framework-derived single-atom catalysts for biomedicine","authors":"","doi":"10.1016/j.nanoms.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>As a alternative for natural enzymes, nanozymes has shown enzyme-like activity and selectivity in the field of various kinds of biomedical application, which has attracted considerable research interest. Recently, single-atom catalysts (SACs) have been extensively studied due to their similar active centers, coordination environment and better stability to natural enzymes. Metal-organic frameworks (MOFs) have been demonstrated as highly promising precursors for the synthesis of various types of SACs. MOF-derived SACs can not only significantly enhance the catalytic activity, but also improve the selectivity of nanozymes due to tunable coordination environment and structure, thereby receiving widespread attention in biomedicine. This review provided an overview of the preparation strategies for MOF-derived SACs, and then detailed the latest research progress of the SACs in the biomedical field for cancer, antibacterial, antioxidation and biosensors. Finally, the challenges and potential future opportunities of MOF-derived SACs in biomedical applications are proposed.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 4","pages":"Pages 396-412"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000922/pdfft?md5=e10913bcad67d19505543b5a2f45570a&pid=1-s2.0-S2589965123000922-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000922","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

As a alternative for natural enzymes, nanozymes has shown enzyme-like activity and selectivity in the field of various kinds of biomedical application, which has attracted considerable research interest. Recently, single-atom catalysts (SACs) have been extensively studied due to their similar active centers, coordination environment and better stability to natural enzymes. Metal-organic frameworks (MOFs) have been demonstrated as highly promising precursors for the synthesis of various types of SACs. MOF-derived SACs can not only significantly enhance the catalytic activity, but also improve the selectivity of nanozymes due to tunable coordination environment and structure, thereby receiving widespread attention in biomedicine. This review provided an overview of the preparation strategies for MOF-derived SACs, and then detailed the latest research progress of the SACs in the biomedical field for cancer, antibacterial, antioxidation and biosensors. Finally, the challenges and potential future opportunities of MOF-derived SACs in biomedical applications are proposed.

Abstract Image

Abstract Image

用于生物医学的金属有机框架衍生单原子催化剂的研究进展
作为天然酶的替代品,纳米酶在各种生物医学应用领域表现出了类似酶的活性和选择性,引起了广泛的研究兴趣。最近,单原子催化剂(SACs)因其与天然酶相似的活性中心、配位环境和更好的稳定性而被广泛研究。金属有机框架(MOFs)已被证明是合成各种类型 SACs 极具前景的前体。MOF 衍生的 SAC 不仅能显著提高催化活性,还能通过可调的配位环境和结构提高纳米酶的选择性,因此在生物医学领域受到广泛关注。本综述概述了 MOF 衍生 SAC 的制备策略,然后详细介绍了 SAC 在生物医学领域的最新研究进展,如癌症、抗菌、抗氧化和生物传感器等。最后,提出了 MOF 衍生 SAC 在生物医学应用中面临的挑战和潜在的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信