A divide-and-conquer algorithm for distributed optimization on networks

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Nazar Emirov , Guohui Song , Qiyu Sun
{"title":"A divide-and-conquer algorithm for distributed optimization on networks","authors":"Nazar Emirov ,&nbsp;Guohui Song ,&nbsp;Qiyu Sun","doi":"10.1016/j.acha.2023.101623","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider networks with topologies described by some connected undirected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem <span><math><msub><mrow><mi>min</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>⁡</mo><mo>{</mo><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>V</mi></mrow></msub><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>}</mo></math></span> with local objective functions <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depending only on neighboring variables of the vertex <span><math><mi>i</mi><mo>∈</mo><mi>V</mi></math></span>. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. In addition, our numerical demonstrations indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods in solving the least squares problem, both with and without the <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> penalty, and exhibits great performance on networks equipped with asynchronous local peer-to-peer communication.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101623"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323001100","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider networks with topologies described by some connected undirected graph G=(V,E) and with some agents (fusion centers) equipped with processing power and local peer-to-peer communication, and optimization problem minx{F(x)=iVfi(x)} with local objective functions fi depending only on neighboring variables of the vertex iV. We introduce a divide-and-conquer algorithm to solve the above optimization problem in a distributed and decentralized manner. The proposed divide-and-conquer algorithm has exponential convergence, its computational cost is almost linear with respect to the size of the network, and it can be fully implemented at fusion centers of the network. In addition, our numerical demonstrations indicate that the proposed divide-and-conquer algorithm has superior performance than popular decentralized optimization methods in solving the least squares problem, both with and without the 1 penalty, and exhibits great performance on networks equipped with asynchronous local peer-to-peer communication.

网络分布式优化的分而治之算法
在本文中,我们考虑了拓扑结构由一些连通无向图 G=(V,E) 描述的网络,以及一些配备处理能力和本地点对点通信的代理(融合中心),并考虑了优化问题 minx{F(x)=∑i∈Vfi(x)} ,其本地目标函数 fi 仅取决于顶点 i∈V 的相邻变量。我们引入了一种分而治之算法,以分布式和去中心化的方式解决上述优化问题。所提出的分而治之算法具有指数收敛性,其计算成本与网络规模几乎呈线性关系,而且可以在网络的融合中心完全实现。此外,我们的数值演示表明,在求解最小二乘法问题时,无论是否有 ℓ1 惩罚,所提出的分而治之算法都比流行的分散优化方法性能优越,而且在配备异步本地点对点通信的网络上表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信