{"title":"Large second-order susceptibility from a quantized indium tin oxide monolayer","authors":"Yiyun Zhang, Bingtao Gao, Dominic Lepage, Yuanbiao Tong, Pan Wang, Wendi Xia, Junru Niu, Yiming Feng, Hongsheng Chen, Haoliang Qian","doi":"10.1038/s41565-023-01574-1","DOIUrl":null,"url":null,"abstract":"Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V–1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications. An atomically thin indium tin oxide film in the form of a quantum well exhibits a χ2 of ~1,800 pm V–1. Theoretical calculations point to an asymmetric electronic interband transition resonance as the reason for this large χ2 value.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 4","pages":"463-470"},"PeriodicalIF":34.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01574-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V–1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications. An atomically thin indium tin oxide film in the form of a quantum well exhibits a χ2 of ~1,800 pm V–1. Theoretical calculations point to an asymmetric electronic interband transition resonance as the reason for this large χ2 value.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.