GEMA: A Genome Exact Mapping Accelerator Based on Learned Indexes

Mohaddeseh Sharei;Mehdi Kamal;Ali Afzali-Kusha;Massoud Pedram
{"title":"GEMA: A Genome Exact Mapping Accelerator Based on Learned Indexes","authors":"Mohaddeseh Sharei;Mehdi Kamal;Ali Afzali-Kusha;Massoud Pedram","doi":"10.1109/TBCAS.2023.3348152","DOIUrl":null,"url":null,"abstract":"In this article, we introduce GEMA, a genome exact mapping accelerator based on learned indexes, specifically designed for FPGA implementation. GEMA utilizes a machine learning (ML) algorithm to precisely locate the exact position of read sequences within the original sequence. To enhance the accuracy of the trained ML model, we incorporate data augmentation and data-distribution-aware partitioning techniques. Additionally, we present an efficient yet low-overhead error recovery technique. To map long reads more efficiently, we propose a speculative prefetching approach, which reduces the required memory bandwidth. Furthermore, we suggest an FPGA-based architecture for implementing the proposed mapping accelerator, optimizing the accesses to off-chip memory. Our studies demonstrate that GEMA achieves up to 1.36 × higher speed for short reads compared to the corresponding results reported in recently published exact mapping accelerators. Moreover, GEMA achieves up to ∼22 × faster mapping of long reads compared to the available results for the longest mapped reads using these accelerators.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10376271/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce GEMA, a genome exact mapping accelerator based on learned indexes, specifically designed for FPGA implementation. GEMA utilizes a machine learning (ML) algorithm to precisely locate the exact position of read sequences within the original sequence. To enhance the accuracy of the trained ML model, we incorporate data augmentation and data-distribution-aware partitioning techniques. Additionally, we present an efficient yet low-overhead error recovery technique. To map long reads more efficiently, we propose a speculative prefetching approach, which reduces the required memory bandwidth. Furthermore, we suggest an FPGA-based architecture for implementing the proposed mapping accelerator, optimizing the accesses to off-chip memory. Our studies demonstrate that GEMA achieves up to 1.36 × higher speed for short reads compared to the corresponding results reported in recently published exact mapping accelerators. Moreover, GEMA achieves up to ∼22 × faster mapping of long reads compared to the available results for the longest mapped reads using these accelerators.
GEMA:基于学习索引的基因组精确映射加速器。
本文介绍的 GEMA 是一种基于学习索引的基因组精确映射加速器,专为 FPGA 实现而设计。GEMA 利用机器学习 (ML) 算法精确定位原始序列中读取序列的确切位置。为了提高训练有素的 ML 模型的准确性,我们采用了数据增强和数据分布感知分区技术。此外,我们还提出了一种高效且低开销的错误恢复技术。为了更高效地映射长读取数据,我们提出了一种投机预取方法,该方法可降低所需的内存带宽。此外,我们还提出了一种基于 FPGA 的架构,用于实现所提出的映射加速器,优化对片外存储器的访问。我们的研究表明,与最近发布的精确映射加速器的相应结果相比,GEMA 的短时间读取速度提高了 1.36 倍。此外,与这些加速器对最长映射读数的现有结果相比,GEMA 对长读数的映射速度提高了 22 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信