{"title":"Attentional blur and blink: Effects of adaptive attentional scaling on visual awareness","authors":"Shuyao Wang , Aytaç Karabay , Elkan G. Akyürek","doi":"10.1016/j.concog.2023.103627","DOIUrl":null,"url":null,"abstract":"<div><p>Attentional scaling is a crucial mechanism that enables us to flexibly allocate our attention to larger or smaller regions in the visual field. Although previous studies have demonstrated the critical role of attentional scaling in visual processing, its impact on modulating visual awareness is not yet fully understood. This study investigates the adaptive control of attentional scaling and its influence on visual awareness in an attentional blink paradigm. Participants were required to attend to the first target’s location, which was manipulated either session-wise, trial-wise, or such that it could be learned across a block of trials. Discrete, all-or-none, awareness was expected when attention was allocated to a narrow area, while gradual awareness was expected when attention was allocated to a larger area. We used mixture modeling to assess second target awareness across these different attentional scales. The results revealed that participants could adaptively control their attentional scale both across stable sessions, and through (implicit) statistical learning in blocks of successive trials. This produced gradual perceptual awareness when the participants adopted a broad attentional scale, causing an attentional “blur”. However, trial-wise cues did not allow for attentional scaling, resulting in more discrete target perception overall, and an attentional “blink”. We conclude that the attentional scale is to some extent under adaptive control during the attentional blink/blur, where it can produce qualitatively different modes of perceptual awareness.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1053810023001642/pdfft?md5=6013e46f651ec491aa01cdebbaed322b&pid=1-s2.0-S1053810023001642-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053810023001642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Attentional scaling is a crucial mechanism that enables us to flexibly allocate our attention to larger or smaller regions in the visual field. Although previous studies have demonstrated the critical role of attentional scaling in visual processing, its impact on modulating visual awareness is not yet fully understood. This study investigates the adaptive control of attentional scaling and its influence on visual awareness in an attentional blink paradigm. Participants were required to attend to the first target’s location, which was manipulated either session-wise, trial-wise, or such that it could be learned across a block of trials. Discrete, all-or-none, awareness was expected when attention was allocated to a narrow area, while gradual awareness was expected when attention was allocated to a larger area. We used mixture modeling to assess second target awareness across these different attentional scales. The results revealed that participants could adaptively control their attentional scale both across stable sessions, and through (implicit) statistical learning in blocks of successive trials. This produced gradual perceptual awareness when the participants adopted a broad attentional scale, causing an attentional “blur”. However, trial-wise cues did not allow for attentional scaling, resulting in more discrete target perception overall, and an attentional “blink”. We conclude that the attentional scale is to some extent under adaptive control during the attentional blink/blur, where it can produce qualitatively different modes of perceptual awareness.