Sobha Tumbapo , Adam Strudwick , Jana J. Stastna , Simon C. Harvey , Marieke J. Bloemink
{"title":"Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation","authors":"Sobha Tumbapo , Adam Strudwick , Jana J. Stastna , Simon C. Harvey , Marieke J. Bloemink","doi":"10.1016/j.mad.2023.111900","DOIUrl":null,"url":null,"abstract":"<div><p>Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode <span><em>Caenorhabditis elegans</em></span> is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing <em>C. elegans</em><span>, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic </span><em>unc-54::gfp</em> worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t<sub>1/2</sub> value found here for UNC-54-GFP using fluorescence (control t<sub>1/2</sub><span> = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.</span></p></div>","PeriodicalId":18340,"journal":{"name":"Mechanisms of Ageing and Development","volume":"217 ","pages":"Article 111900"},"PeriodicalIF":5.3000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Ageing and Development","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047637423001264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode Caenorhabditis elegans is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing C. elegans, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic unc-54::gfp worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t1/2 value found here for UNC-54-GFP using fluorescence (control t1/2 = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.
期刊介绍:
Mechanisms of Ageing and Development is a multidisciplinary journal aimed at revealing the molecular, biochemical and biological mechanisms that underlie the processes of aging and development in various species as well as of age-associated diseases. Emphasis is placed on investigations that delineate the contribution of macromolecular damage and cytotoxicity, genetic programs, epigenetics and genetic instability, mitochondrial function, alterations of metabolism and innovative anti-aging approaches. For all of the mentioned studies it is necessary to address the underlying mechanisms.
Mechanisms of Ageing and Development publishes original research, review and mini-review articles. The journal also publishes Special Issues that focus on emerging research areas. Special issues may include all types of articles following peered review. Proposals should be sent directly to the Editor-in-Chief.