Rapid predictive dosimetry for radioembolization.

Q3 Medicine
Yung Hsiang Kao
{"title":"Rapid predictive dosimetry for radioembolization.","authors":"Yung Hsiang Kao","doi":"10.22038/AOJNMB.2023.74023.1514","DOIUrl":null,"url":null,"abstract":"<p><p>Economics of today's busy clinical practice demand both time and cost-efficient methods of predictive dosimetry for liver radioembolisation. A rapid predictive schema adapted from the Medical Internal Radiation Dose (MIRD) method i.e., Partition Model, has been devised that can be completed within minutes. This rapid schema may guide institutions that do not have access to software capable of comprehensive auto-segmentation of lung, tumour and non-tumorous liver, or where rigorous artery-specific tomographic predictive dosimetry is unfeasible for the routine clinical workflow. This rapid schema is applicable to any beta-emitting radiomicrosphere, although absorbed dose-response thresholds will differ according to device. Sampling errors in lung, tumour and non-tumorous liver will compound and propagate throughout this schema. This rapid schema achieves efficiency in lieu of accuracy. The user must be mindful of potentially large sampling errors and assumes all responsibility. Any suspicion of significant error requires the user to revert back to standard-of-care methods.</p>","PeriodicalId":8503,"journal":{"name":"Asia Oceania Journal of Nuclear Medicine and Biology","volume":"12 1","pages":"35-36"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10757052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Oceania Journal of Nuclear Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/AOJNMB.2023.74023.1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Economics of today's busy clinical practice demand both time and cost-efficient methods of predictive dosimetry for liver radioembolisation. A rapid predictive schema adapted from the Medical Internal Radiation Dose (MIRD) method i.e., Partition Model, has been devised that can be completed within minutes. This rapid schema may guide institutions that do not have access to software capable of comprehensive auto-segmentation of lung, tumour and non-tumorous liver, or where rigorous artery-specific tomographic predictive dosimetry is unfeasible for the routine clinical workflow. This rapid schema is applicable to any beta-emitting radiomicrosphere, although absorbed dose-response thresholds will differ according to device. Sampling errors in lung, tumour and non-tumorous liver will compound and propagate throughout this schema. This rapid schema achieves efficiency in lieu of accuracy. The user must be mindful of potentially large sampling errors and assumes all responsibility. Any suspicion of significant error requires the user to revert back to standard-of-care methods.

放射栓塞的快速预测剂量测定。
当今繁忙的临床实践需要既省时又经济的肝脏放射栓塞剂量预测方法。根据医用内部辐射剂量(MIRD)方法改编的快速预测方案,即分区模型,已被设计出来,可在几分钟内完成。对于无法使用软件对肺部、肿瘤和非肿瘤肝脏进行全面自动分割的机构,或者在常规临床工作流程中无法进行严格的特定动脉断层预测剂量测定的机构,该快速方案可为其提供指导。虽然吸收剂量-反应阈值会因设备而异,但这种快速模式适用于任何β放射微球。肺部、肿瘤和非肿瘤性肝脏的取样误差将在整个方案中复合和传播。这种快速模式实现的是效率而非准确性。用户必须注意潜在的巨大取样误差,并承担所有责任。如果怀疑存在重大误差,用户必须重新使用标准护理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia Oceania Journal of Nuclear Medicine and Biology
Asia Oceania Journal of Nuclear Medicine and Biology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
1.80
自引率
0.00%
发文量
28
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信