{"title":"A simple and rapid preparation of smooth muscle myosin 2 for the electron microscopic analysis","authors":"Anahita Vispi Bharda, Hyun Suk Jung","doi":"10.1186/s42649-023-00094-5","DOIUrl":null,"url":null,"abstract":"<div><p>There has been an increase in the demand for purified protein as a result of recent developments in the structural biology of myosin 2. Although promising, current practices in myosin purification are usually time-consuming and cumbersome. The reported increased actin to myosin ratio in smooth muscles adds to the complexity of the purification process. Present study outlines a streamlined approach to isolate smooth muscle myosin 2 molecules from actomyosin suspension of chicken gizzard tissues. The procedure entails treating actomyosin for a brief period with actin-binding peptide phalloidin, followed by co-sedimentation and short column size exclusion chromatography. Typical myosin molecule with heavy and light chains and approximately 95% purity was examined using gel electrophoresis. Negative staining electron microscopy and image processing showed intact 10S myosin 2 molecules, proving that phalloidin is effective at eliminating majority of actin in the form of F-actin without dramatic alteration in the structure of myosin. The entire purification discussed here can be completed in a few hours, and further analysis can be done the same day. Thus, by offering quick and fresh supplies of native myosin molecules suited for structural research, specially cryo-electron microscopy, this innovative approach can be adapted to get around the drawbacks of time-intensive myosin purifying processes.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-023-00094-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microscopy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42649-023-00094-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0
Abstract
There has been an increase in the demand for purified protein as a result of recent developments in the structural biology of myosin 2. Although promising, current practices in myosin purification are usually time-consuming and cumbersome. The reported increased actin to myosin ratio in smooth muscles adds to the complexity of the purification process. Present study outlines a streamlined approach to isolate smooth muscle myosin 2 molecules from actomyosin suspension of chicken gizzard tissues. The procedure entails treating actomyosin for a brief period with actin-binding peptide phalloidin, followed by co-sedimentation and short column size exclusion chromatography. Typical myosin molecule with heavy and light chains and approximately 95% purity was examined using gel electrophoresis. Negative staining electron microscopy and image processing showed intact 10S myosin 2 molecules, proving that phalloidin is effective at eliminating majority of actin in the form of F-actin without dramatic alteration in the structure of myosin. The entire purification discussed here can be completed in a few hours, and further analysis can be done the same day. Thus, by offering quick and fresh supplies of native myosin molecules suited for structural research, specially cryo-electron microscopy, this innovative approach can be adapted to get around the drawbacks of time-intensive myosin purifying processes.
Applied MicroscopyImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.40
自引率
0.00%
发文量
10
审稿时长
10 weeks
期刊介绍:
Applied Microscopy is a peer-reviewed journal sponsored by the Korean Society of Microscopy. The journal covers all the interdisciplinary fields of technological developments in new microscopy methods and instrumentation and their applications to biological or materials science for determining structure and chemistry. ISSN: 22875123, 22874445.