Feedback Stabilization of a Two-Fluid Surface Tension System Modeling the Motion of a Soap Bubble at Low Reynolds Number: The Two-Dimensional Case

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Sébastien Court
{"title":"Feedback Stabilization of a Two-Fluid Surface Tension System Modeling the Motion of a Soap Bubble at Low Reynolds Number: The Two-Dimensional Case","authors":"Sébastien Court","doi":"10.1007/s00021-023-00841-4","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to design a feedback operator for stabilizing in infinite time horizon a system modeling the interactions between a viscous incompressible fluid and the deformation of a soap bubble. The latter is represented by an interface separating a bounded domain of <span>\\(\\mathbb {R}^2\\)</span> into two connected parts filled with viscous incompressible fluids. The interface is a smooth perturbation of the 1-sphere, and the surrounding fluids satisfy the incompressible Stokes equations in time-dependent domains. The mean curvature of the surface defines a surface tension force which induces a jump of the normal trace of the Cauchy stress tensor. The response of the fluids is a velocity trace on the interface, governing the time evolution of the latter, via the equality of velocities. The data are assumed to be sufficiently small, in particular the initial perturbation, that is the initial shape of the soap bubble is close enough to a circle. The control function is a surface tension type force on the interface. We design it as the sum of two feedback operators: one is explicit, the second one is finite-dimensional. They enable us to define a control operator that stabilizes locally the soap bubble to a circle with an arbitrary exponential decay rate, up to translations, and up to non-contact with the outer boundary.\n</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00841-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00841-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to design a feedback operator for stabilizing in infinite time horizon a system modeling the interactions between a viscous incompressible fluid and the deformation of a soap bubble. The latter is represented by an interface separating a bounded domain of \(\mathbb {R}^2\) into two connected parts filled with viscous incompressible fluids. The interface is a smooth perturbation of the 1-sphere, and the surrounding fluids satisfy the incompressible Stokes equations in time-dependent domains. The mean curvature of the surface defines a surface tension force which induces a jump of the normal trace of the Cauchy stress tensor. The response of the fluids is a velocity trace on the interface, governing the time evolution of the latter, via the equality of velocities. The data are assumed to be sufficiently small, in particular the initial perturbation, that is the initial shape of the soap bubble is close enough to a circle. The control function is a surface tension type force on the interface. We design it as the sum of two feedback operators: one is explicit, the second one is finite-dimensional. They enable us to define a control operator that stabilizes locally the soap bubble to a circle with an arbitrary exponential decay rate, up to translations, and up to non-contact with the outer boundary.

Abstract Image

模拟低雷诺数肥皂泡运动的双流体表面张力系统的反馈稳定:二维情况
本文的目的是设计一种反馈算子,用于在无限时间范围内稳定一个模拟粘性不可压缩流体与肥皂泡变形之间相互作用的系统。后者由一个界面表示,该界面将一个有界域(\mathbb {R}^2\)分隔成两个相连的部分,其中充满了粘性不可压缩流体。界面是 1 球的平滑扰动,周围流体满足随时间变化的域中不可压缩斯托克斯方程。表面的平均曲率定义了一种表面张力,它引起了考奇应力张量法线迹的跳跃。流体的响应是界面上的速度轨迹,通过速度相等来控制后者的时间演化。假设数据足够小,特别是初始扰动,即肥皂泡的初始形状足够接近圆形。控制函数是界面上的表面张力。我们将其设计为两个反馈算子之和:一个是显式的,另一个是有限维的。它们使我们能够定义一个控制算子,以任意指数衰减率将肥皂泡局部稳定为圆形,直至平移,直至不与外部边界接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信