{"title":"Double-index rainfall warning and probabilistic physically based model for fast-moving landslide hazard analysis in subtropical-typhoon area","authors":"Taorui Zeng, Quanbing Gong, Liyang Wu, Yuhang Zhu, Kunlong Yin, Dario Peduto","doi":"10.1007/s10346-023-02187-4","DOIUrl":null,"url":null,"abstract":"<p>In subtropical typhoon-prone regions, landslides are triggered by short-duration intense rainfall and prolonged periods of elevated pore-water pressure. However, fast-moving landslides pose a significant challenge for timely warning because of insufficient data on rainfall triggers and the identification of potential failure sites. Thus, our study introduces an integrated approach that combines a double-index intensity-duration (I-D) threshold, accounting for daily rainfall (R<sub>0</sub>) and 5-d effective rainfall (R<sub>5</sub>), with the MC-TRIGRS, a probabilistic physically based model, to analyze fast-moving landslide hazards at a regional scale. This approach is characterized by its innovative features: (i) it employs a double-index model to categorize rainfall events, differentiating between long-term continuous rainfall and short-term intense precipitation; (ii) it utilizes a comprehensive dataset from extensive field investigations to implement the grey wolf optimizer (GWO) -enhanced long short-term memory neural network (LSTM) to predict soil thickness distributions across the study area; and (iii) it adopts the classical Monte Carlo method to calculate failure probabilities under various rainfall scenarios, incorporating randomness in key soil parameters, such as cohesion and internal friction angle. By leveraging geotechnical data from both field and laboratory tests and integrating the accumulated knowledge, these models can be applied to the coastal mountainous basins of Eastern China, a region highly prone to landslides. Our goal was to augment the effectiveness of landslide early warning systems. Particularly, the synergistic use of rainfall empirical statistics and probabilistic physically based slope stability models is poised to bolster real-time control and risk mitigation strategies, providing a robust solution for short-term preparedness.</p>","PeriodicalId":17938,"journal":{"name":"Landslides","volume":"35 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landslides","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10346-023-02187-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In subtropical typhoon-prone regions, landslides are triggered by short-duration intense rainfall and prolonged periods of elevated pore-water pressure. However, fast-moving landslides pose a significant challenge for timely warning because of insufficient data on rainfall triggers and the identification of potential failure sites. Thus, our study introduces an integrated approach that combines a double-index intensity-duration (I-D) threshold, accounting for daily rainfall (R0) and 5-d effective rainfall (R5), with the MC-TRIGRS, a probabilistic physically based model, to analyze fast-moving landslide hazards at a regional scale. This approach is characterized by its innovative features: (i) it employs a double-index model to categorize rainfall events, differentiating between long-term continuous rainfall and short-term intense precipitation; (ii) it utilizes a comprehensive dataset from extensive field investigations to implement the grey wolf optimizer (GWO) -enhanced long short-term memory neural network (LSTM) to predict soil thickness distributions across the study area; and (iii) it adopts the classical Monte Carlo method to calculate failure probabilities under various rainfall scenarios, incorporating randomness in key soil parameters, such as cohesion and internal friction angle. By leveraging geotechnical data from both field and laboratory tests and integrating the accumulated knowledge, these models can be applied to the coastal mountainous basins of Eastern China, a region highly prone to landslides. Our goal was to augment the effectiveness of landslide early warning systems. Particularly, the synergistic use of rainfall empirical statistics and probabilistic physically based slope stability models is poised to bolster real-time control and risk mitigation strategies, providing a robust solution for short-term preparedness.
期刊介绍:
Landslides are gravitational mass movements of rock, debris or earth. They may occur in conjunction with other major natural disasters such as floods, earthquakes and volcanic eruptions. Expanding urbanization and changing land-use practices have increased the incidence of landslide disasters. Landslides as catastrophic events include human injury, loss of life and economic devastation and are studied as part of the fields of earth, water and engineering sciences. The aim of the journal Landslides is to be the common platform for the publication of integrated research on landslide processes, hazards, risk analysis, mitigation, and the protection of our cultural heritage and the environment. The journal publishes research papers, news of recent landslide events and information on the activities of the International Consortium on Landslides.
- Landslide dynamics, mechanisms and processes
- Landslide risk evaluation: hazard assessment, hazard mapping, and vulnerability assessment
- Geological, Geotechnical, Hydrological and Geophysical modeling
- Effects of meteorological, hydrological and global climatic change factors
- Monitoring including remote sensing and other non-invasive systems
- New technology, expert and intelligent systems
- Application of GIS techniques
- Rock slides, rock falls, debris flows, earth flows, and lateral spreads
- Large-scale landslides, lahars and pyroclastic flows in volcanic zones
- Marine and reservoir related landslides
- Landslide related tsunamis and seiches
- Landslide disasters in urban areas and along critical infrastructure
- Landslides and natural resources
- Land development and land-use practices
- Landslide remedial measures / prevention works
- Temporal and spatial prediction of landslides
- Early warning and evacuation
- Global landslide database