Jorge Alberto Mares-Mayagoitia, Fabiola Lafarga-De la Cruz, Fiorenza Micheli, Pedro Cruz- Hernández, Juan A de-Anda-Montañez, John Hyde, Norma Y Hernández-Saavedra, Paulina Mejía-Ruíz, Vladimir S De Jesús-Bonilla, Carmen E Vargas-Peralta, Fausto Valenzuela- Quiñonez
{"title":"Seascape genomics of the pink abalone (Haliotis corrugata): An insight into a cross-border species in the northeast Pacific coast","authors":"Jorge Alberto Mares-Mayagoitia, Fabiola Lafarga-De la Cruz, Fiorenza Micheli, Pedro Cruz- Hernández, Juan A de-Anda-Montañez, John Hyde, Norma Y Hernández-Saavedra, Paulina Mejía-Ruíz, Vladimir S De Jesús-Bonilla, Carmen E Vargas-Peralta, Fausto Valenzuela- Quiñonez","doi":"10.1093/jhered/esad083","DOIUrl":null,"url":null,"abstract":"Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, USA to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the USA; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species’ distribution. Overall, 2,231 neutral, nine potentially adaptive and three Genomic-Environmental Association (GEA) loci were detected. The neutral structure identified two groups: 1) California, USA, and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":"137 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esad083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Seascape genomics gives insight into the geographic and environmental factors shaping local adaptations. It improves the understanding of the potential effects of climate change, which is relevant to provide the basis for the international management of fishery resources. The pink abalone (Haliotis corrugata) is distributed from California, USA to Baja California Sur, Mexico, exposed to a latitudinal environmental gradient in the California Current System. Management of the pink abalone contrasts between Mexico and the USA; Mexico has an active fishery organized in four administrative areas, while the United States has kept the fishery in permanent closure since 1996. However, the impact of environmental factors on genetic variation along the species distribution remains unknown, and understanding this relationship is crucial for effective spatial management strategies. This study aims to investigate the neutral and adaptive genomic structure of H. corrugata. A total of 203 samples from 13 locations were processed using ddRADseq, and covering the species’ distribution. Overall, 2,231 neutral, nine potentially adaptive and three Genomic-Environmental Association (GEA) loci were detected. The neutral structure identified two groups: 1) California, USA, and 2) Baja California Peninsula, México. In addition, the adaptive structure analysis also detected two groups with genetic divergence observed at Punta Eugenia. Notably, the seawater temperature significantly correlated with the northern group (temperate) and the southern (warmer) group. This study is a valuable foundation for future research and conservation initiatives, emphasizing the importance of considering neutral and adaptive genetic factors when developing management strategies for marine species.
期刊介绍:
Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal.
Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.