i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals

IF 2.3 3区 医学 Q2 SURGERY
Chunyuan Shi, Jingdong Zhao, Dapeng Yang, Li Jiang
{"title":"i-MYO: A multi-grasp prosthetic hand control system based on gaze movements, augmented reality, and myoelectric signals","authors":"Chunyuan Shi,&nbsp;Jingdong Zhao,&nbsp;Dapeng Yang,&nbsp;Li Jiang","doi":"10.1002/rcs.2617","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Controlling a multi-grasp prosthetic hand still remains a challenge. This study explores the influence of merging gaze movements and augmented reality in bionics on improving prosthetic hand control.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A control system based on gaze movements, augmented reality, and myoelectric signals (i-MYO) was proposed. In the i-MYO, the GazeButton was introduced into the controller to detect the grasp-type intention from the eye-tracking signals, and the proportional velocity scheme based on the i-MYO was used to control hand movement.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The able-bodied subjects with no prior training successfully transferred objects in 91.6% of the cases and switched the optimal grasp types in 97.5%. The patient could successfully trigger the EMG to control the hand holding the objects in 98.7% of trials in around 3.2 s and spend around 1.3 s switching the optimal grasp types in 99.2% of trials.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Merging gaze movements and augmented reality in bionics can widen the control bandwidth of prosthetic hand. With the help of i-MYO, the subjects can control a prosthetic hand using six grasp types if they can manipulate two muscle signals and gaze movement.</p>\n </section>\n </div>","PeriodicalId":50311,"journal":{"name":"International Journal of Medical Robotics and Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Robotics and Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcs.2617","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Controlling a multi-grasp prosthetic hand still remains a challenge. This study explores the influence of merging gaze movements and augmented reality in bionics on improving prosthetic hand control.

Methods

A control system based on gaze movements, augmented reality, and myoelectric signals (i-MYO) was proposed. In the i-MYO, the GazeButton was introduced into the controller to detect the grasp-type intention from the eye-tracking signals, and the proportional velocity scheme based on the i-MYO was used to control hand movement.

Results

The able-bodied subjects with no prior training successfully transferred objects in 91.6% of the cases and switched the optimal grasp types in 97.5%. The patient could successfully trigger the EMG to control the hand holding the objects in 98.7% of trials in around 3.2 s and spend around 1.3 s switching the optimal grasp types in 99.2% of trials.

Conclusions

Merging gaze movements and augmented reality in bionics can widen the control bandwidth of prosthetic hand. With the help of i-MYO, the subjects can control a prosthetic hand using six grasp types if they can manipulate two muscle signals and gaze movement.

i-MYO:基于凝视运动、增强现实技术和肌电信号的多抓假手控制系统
控制多抓假手仍然是一项挑战。本研究探讨了在仿生学中融合凝视运动和增强现实技术对改善假手控制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
12.00%
发文量
131
审稿时长
6-12 weeks
期刊介绍: The International Journal of Medical Robotics and Computer Assisted Surgery provides a cross-disciplinary platform for presenting the latest developments in robotics and computer assisted technologies for medical applications. The journal publishes cutting-edge papers and expert reviews, complemented by commentaries, correspondence and conference highlights that stimulate discussion and exchange of ideas. Areas of interest include robotic surgery aids and systems, operative planning tools, medical imaging and visualisation, simulation and navigation, virtual reality, intuitive command and control systems, haptics and sensor technologies. In addition to research and surgical planning studies, the journal welcomes papers detailing clinical trials and applications of computer-assisted workflows and robotic systems in neurosurgery, urology, paediatric, orthopaedic, craniofacial, cardiovascular, thoraco-abdominal, musculoskeletal and visceral surgery. Articles providing critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies, commenting on ease of use, or addressing surgical education and training issues are also encouraged. The journal aims to foster a community that encompasses medical practitioners, researchers, and engineers and computer scientists developing robotic systems and computational tools in academic and commercial environments, with the intention of promoting and developing these exciting areas of medical technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信