{"title":"Inhibitor design for TMPRSS2: insights from computational analysis of its backbone hydrogen bonds using a simple descriptor","authors":"Suraj Ugrani","doi":"10.1007/s00249-023-01695-4","DOIUrl":null,"url":null,"abstract":"<div><p>Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scoring function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface area term ΔG<sub>sa</sub> of the GBSA score is demonstrated with machine learning regression and principal component analysis. The effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these inhibitors and may prove useful in the design of new inhibitors.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 1-2","pages":"27 - 46"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01695-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01695-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Transmembrane protease serine 2 (TMPRSS2) is an important drug target due to its role in the infection mechanism of coronaviruses including SARS-CoV-2. Current understanding regarding the molecular mechanisms of known inhibitors and insights required for inhibitor design are limited. This study investigates the effect of inhibitor binding on the intramolecular backbone hydrogen bonds (BHBs) of TMPRSS2 using the concept of hydrogen bond wrapping, which is the phenomenon of stabilization of a hydrogen bond in a solvent environment as a result of being surrounded by non-polar groups. A molecular descriptor which quantifies the extent of wrapping around BHBs is introduced for this. First, virtual screening for TMPRSS2 inhibitors is performed by molecular docking using the program DOCK 6 with a Generalized Born surface area (GBSA) scoring function. The docking results are then analyzed using this descriptor and its relationship to the solvent-accessible surface area term ΔGsa of the GBSA score is demonstrated with machine learning regression and principal component analysis. The effect of binding of the inhibitors camostat, nafamostat, and 4-guanidinobenzoic acid (GBA) on the wrapping of important BHBs in TMPRSS2 is also studied using molecular dynamics. For BHBs with a large increase in wrapping groups due to these inhibitors, the radial distribution function of water revealed that certain residues involved in these BHBs, like Gln438, Asp440, and Ser441, undergo preferential desolvation. The findings offer valuable insights into the mechanisms of these inhibitors and may prove useful in the design of new inhibitors.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.