Qi Lu , Pengcheng Wang , Jiang Chang , De Chen , Shenghan Gao , Jacob Höglund , Zhengwang Zhang
{"title":"Population genomic data reveal low genetic diversity, divergence and local adaptation among threatened Reeves's Pheasant (Syrmaticus reevesii)","authors":"Qi Lu , Pengcheng Wang , Jiang Chang , De Chen , Shenghan Gao , Jacob Höglund , Zhengwang Zhang","doi":"10.1016/j.avrs.2023.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Population genomic data could provide valuable information for conservation efforts; however, limited studies have been conducted to investigate the genetic status of threatened pheasants. Reeves's Pheasant (<em>Syrmaticus reevesii</em>) is facing population decline, attributed to increases in habitat loss. There is a knowledge gap in understanding the genomic status and genetic basis underlying the local adaptation of this threatened bird. Here, we used population genomic data to assess population structure, genetic diversity, inbreeding patterns, and genetic divergence. Furthermore, we identified candidate genes linked with adaptation across the current distribution of Reeves's Pheasant. The present study assembled the first <em>de novo</em> genome sequence of Reeves's Pheasant and annotated 19,458 genes. We also sequenced 30 individuals from three populations (Dabie Mountain, Shennongjia, Qinling Mountain) and found that there was clear population structure among those populations. By comparing with other threatened species, we found that Reeves's Pheasants have low genetic diversity. Runs of homozygosity suggest that the Shennongjia population has experienced serious inbreeding. The demographic history results indicated that three populations experienced several declines during the glacial period. Local adaptative analysis among the populations identified 241 candidate genes under directional selection. They are involved in a large variety of processes, including the immune response and pigmentation. Our results suggest that the three populations should be considered as three different conservation units. The current study provides genetic evidence for conserving the threatened Reeves's Pheasant and provides genomic resources for global biodiversity management.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2053716623000828/pdfft?md5=6d6721caf38120ae008cab4159dd34af&pid=1-s2.0-S2053716623000828-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2053716623000828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Population genomic data could provide valuable information for conservation efforts; however, limited studies have been conducted to investigate the genetic status of threatened pheasants. Reeves's Pheasant (Syrmaticus reevesii) is facing population decline, attributed to increases in habitat loss. There is a knowledge gap in understanding the genomic status and genetic basis underlying the local adaptation of this threatened bird. Here, we used population genomic data to assess population structure, genetic diversity, inbreeding patterns, and genetic divergence. Furthermore, we identified candidate genes linked with adaptation across the current distribution of Reeves's Pheasant. The present study assembled the first de novo genome sequence of Reeves's Pheasant and annotated 19,458 genes. We also sequenced 30 individuals from three populations (Dabie Mountain, Shennongjia, Qinling Mountain) and found that there was clear population structure among those populations. By comparing with other threatened species, we found that Reeves's Pheasants have low genetic diversity. Runs of homozygosity suggest that the Shennongjia population has experienced serious inbreeding. The demographic history results indicated that three populations experienced several declines during the glacial period. Local adaptative analysis among the populations identified 241 candidate genes under directional selection. They are involved in a large variety of processes, including the immune response and pigmentation. Our results suggest that the three populations should be considered as three different conservation units. The current study provides genetic evidence for conserving the threatened Reeves's Pheasant and provides genomic resources for global biodiversity management.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.