Guanghao Wang, Jianhua Gu, Deyu Long, Xiangyu Zhang, Chenxu Zhao, Hong Zhang, Chunhuan Chen, Wanquan Ji
{"title":"Genome-wide identification of wheat ABC gene family and expression in response to fungal stress treatment","authors":"Guanghao Wang, Jianhua Gu, Deyu Long, Xiangyu Zhang, Chenxu Zhao, Hong Zhang, Chunhuan Chen, Wanquan Ji","doi":"10.1007/s11816-023-00881-2","DOIUrl":null,"url":null,"abstract":"<p>The ATP-binding cassette (ABC) transporter family is one of the largest protein families in plants and plays an essential role in addressing biotic and abiotic stresses. Wheat, a vital global grain crop, faces multifaceted safety challenges, primarily from fungal diseases like stripe rust and powdery mildew. In the present study, we identified the whole genome of the wheat <i>ABC</i> family, and 463 nonredundant <i>ABC</i> genes were identified. The <i>ABC</i> family can be divided into nine evolutionary branches and eight subfamilies based on phylogenetic tree analysis. This paper delved deeper into characterizing the gene structure, promoter region, and gene expression within the <i>TaABC</i> family. Segmental duplication was the main reason for the expansion of the <i>TaABC</i> genes. Ka/Ks analysis suggested that most <i>TaABC</i> genes were intensely purified and selected. The collinear analysis of <i>TaABC</i> and other species showed that the <i>ABC</i> genes were conserved in evolution. RNA-seq data and qPCR data from wheat infected with powdery mildew or stripe rust showed that most <i>TaABC</i> genes were induced to change expression. The candidate genes <i>TaABCB15-3B</i> and <i>TaABCG38</i> exhibited responsiveness to powdery mildew in resistant/susceptible wheat, while remaining unresponsive to stripe rust. Our findings serve as a valuable reference for gaining a deeper understanding of the function and evolution of <i>TaABCs</i>, aiding in the identification of enduring disease resistance genes within the TaABCs of wheat.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-023-00881-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ATP-binding cassette (ABC) transporter family is one of the largest protein families in plants and plays an essential role in addressing biotic and abiotic stresses. Wheat, a vital global grain crop, faces multifaceted safety challenges, primarily from fungal diseases like stripe rust and powdery mildew. In the present study, we identified the whole genome of the wheat ABC family, and 463 nonredundant ABC genes were identified. The ABC family can be divided into nine evolutionary branches and eight subfamilies based on phylogenetic tree analysis. This paper delved deeper into characterizing the gene structure, promoter region, and gene expression within the TaABC family. Segmental duplication was the main reason for the expansion of the TaABC genes. Ka/Ks analysis suggested that most TaABC genes were intensely purified and selected. The collinear analysis of TaABC and other species showed that the ABC genes were conserved in evolution. RNA-seq data and qPCR data from wheat infected with powdery mildew or stripe rust showed that most TaABC genes were induced to change expression. The candidate genes TaABCB15-3B and TaABCG38 exhibited responsiveness to powdery mildew in resistant/susceptible wheat, while remaining unresponsive to stripe rust. Our findings serve as a valuable reference for gaining a deeper understanding of the function and evolution of TaABCs, aiding in the identification of enduring disease resistance genes within the TaABCs of wheat.
期刊介绍:
Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.