Yingying Guo, Chenhui Wang, Yuhang Xiao, Xiaohong Tan, Weidong He, Jianpo Chen, Yan Li, Hao Cui, Chengxin Wang
{"title":"Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction","authors":"Yingying Guo, Chenhui Wang, Yuhang Xiao, Xiaohong Tan, Weidong He, Jianpo Chen, Yan Li, Hao Cui, Chengxin Wang","doi":"10.1016/j.apcatb.2023.123679","DOIUrl":null,"url":null,"abstract":"<div><p>Fe single-atom catalysts (SACs) have emerged as a promising alternative to platinum for catalyzing oxygen reduction reactions (ORR). Nevertheless, their practical applicability is hindered by insufficient stability caused by structural corrosion during ORR. Here, we developed an effective strategy to optimize and stabilize the Fe SAs (single-atoms) sites by implanting chromium (Cr) atomic clusters (ACs) to address the formidable deactivation issue of the best-performing yet unstable Fe-N-C catalysts. Cr<sub>AC</sub>-Fe<sub>1</sub>/N-S-C demonstrates an amazing stability with a negligible decline in activity after 100,000 CV cycles, and can maintain 81% of initial current after a continuous 50-hour operation period. Theoretical calculations and experimental evidence substantiate that the integration of Cr ACs not only weakens the binding of OH* to the Fe site, thereby facilitating the ORR process, but also eliminates in situ-generated reactive oxygen species (ROS) and retards Fe ion leaching from active sites, thus stabilizing of the Fe SA sites.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":"344 ","pages":"Article 123679"},"PeriodicalIF":20.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092633732301322X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe single-atom catalysts (SACs) have emerged as a promising alternative to platinum for catalyzing oxygen reduction reactions (ORR). Nevertheless, their practical applicability is hindered by insufficient stability caused by structural corrosion during ORR. Here, we developed an effective strategy to optimize and stabilize the Fe SAs (single-atoms) sites by implanting chromium (Cr) atomic clusters (ACs) to address the formidable deactivation issue of the best-performing yet unstable Fe-N-C catalysts. CrAC-Fe1/N-S-C demonstrates an amazing stability with a negligible decline in activity after 100,000 CV cycles, and can maintain 81% of initial current after a continuous 50-hour operation period. Theoretical calculations and experimental evidence substantiate that the integration of Cr ACs not only weakens the binding of OH* to the Fe site, thereby facilitating the ORR process, but also eliminates in situ-generated reactive oxygen species (ROS) and retards Fe ion leaching from active sites, thus stabilizing of the Fe SA sites.
铁单原子催化剂(SAC)已成为铂催化氧还原反应(ORR)的一种有前途的替代品。然而,由于 ORR 过程中的结构腐蚀导致稳定性不足,它们的实际应用受到了阻碍。在此,我们开发了一种有效的策略,通过植入铬(Cr)原子团簇(ACs)来优化和稳定铁的单原子(SAs)位点,以解决性能最佳但不稳定的铁-氮-碳催化剂的严重失活问题。CrAC-Fe1/N-S-C 具有惊人的稳定性,在 100,000 次 CV 循环后活性的下降可以忽略不计,并且在连续运行 50 小时后仍能保持 81% 的初始电流。理论计算和实验证明,铬 AC 的加入不仅能减弱 OH* 与 Fe 位点的结合,从而促进 ORR 过程,还能消除原位产生的活性氧(ROS),阻止 Fe 离子从活性位点浸出,从而稳定 Fe SA 位点。
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.