Correlating phase transition with heat generation through calorimetric data

IF 42.9 Q1 ELECTROCHEMISTRY
{"title":"Correlating phase transition with heat generation through calorimetric data","authors":"","doi":"10.1016/j.esci.2023.100226","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the widespread utilization of Lithium-ion batteries (LIBs), concerns regarding safety during operation persist owing to accidents and potential risks of fires and explosions. To comprehend the thermal dynamics that underlie severe LIB incidents, calorimetry tests have been prevalently employed for over three decades to examine the exothermic/endothermic behavior, reaction kinetics, and thermal interactions among LIB materials. There exists a substantial volume of calorimetry test results on various LIB electrodes, electrolytes, and other components. However, this data showcases low consistency, yielding an unreliable database that obstructs a thorough understanding of LIB thermal behavior. In this research, a comparative analysis of differential scanning calorimetry (DSC) results from materials utilized in the most commercialized LIB systems is conducted. The analysis unveils notable discrepancies in DSC data amassed by different researchers, identifies five predominant causes of data inconsistency, proposes a standardized DSC operational procedure, and generates a set of self-consistent data. Subsequently, an intrinsic safety spectrum is delineated and compared with X-ray diffraction (XRD) outcomes to elucidate the correlation between the crystal lattice structure and the thermal behavior of the material. This work aids in the formation of a comparative DSC database, utilizing the vast but inconsistent literature data. Moreover, it clarifies the linkage between the material structure and thermal behavior, facilitating data-driven thermal analysis of LIBs.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 4","pages":"Article 100226"},"PeriodicalIF":42.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001805/pdfft?md5=8e5283f925af58fc47294351614600d0&pid=1-s2.0-S2667141723001805-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the widespread utilization of Lithium-ion batteries (LIBs), concerns regarding safety during operation persist owing to accidents and potential risks of fires and explosions. To comprehend the thermal dynamics that underlie severe LIB incidents, calorimetry tests have been prevalently employed for over three decades to examine the exothermic/endothermic behavior, reaction kinetics, and thermal interactions among LIB materials. There exists a substantial volume of calorimetry test results on various LIB electrodes, electrolytes, and other components. However, this data showcases low consistency, yielding an unreliable database that obstructs a thorough understanding of LIB thermal behavior. In this research, a comparative analysis of differential scanning calorimetry (DSC) results from materials utilized in the most commercialized LIB systems is conducted. The analysis unveils notable discrepancies in DSC data amassed by different researchers, identifies five predominant causes of data inconsistency, proposes a standardized DSC operational procedure, and generates a set of self-consistent data. Subsequently, an intrinsic safety spectrum is delineated and compared with X-ray diffraction (XRD) outcomes to elucidate the correlation between the crystal lattice structure and the thermal behavior of the material. This work aids in the formation of a comparative DSC database, utilizing the vast but inconsistent literature data. Moreover, it clarifies the linkage between the material structure and thermal behavior, facilitating data-driven thermal analysis of LIBs.

Abstract Image

Abstract Image

通过量热数据将相变与发热相关联
尽管锂离子电池(LIB)得到了广泛应用,但由于事故以及潜在的火灾和爆炸风险,人们对其运行过程中的安全性一直存在担忧。为了理解导致严重锂离子电池事故的热动力学,三十多年来,人们普遍采用量热测试来研究锂离子电池材料的放热/散热行为、反应动力学和热相互作用。针对各种锂电池电极、电解质和其他组件的量热测试结果数量可观。然而,这些数据的一致性很低,形成了一个不可靠的数据库,阻碍了对锂电池热行为的全面了解。在这项研究中,我们对大多数商业化锂离子电池系统中使用的材料的差示扫描量热法(DSC)结果进行了比较分析。分析揭示了不同研究人员所积累的 DSC 数据中存在的显著差异,确定了造成数据不一致的五个主要原因,提出了标准化 DSC 操作程序,并生成了一组自洽数据。随后,划定了内在安全光谱,并将其与 X 射线衍射 (XRD) 结果进行比较,以阐明晶格结构与材料热行为之间的相关性。这项工作有助于利用大量不一致的文献数据建立一个 DSC 比较数据库。此外,它还阐明了材料结构与热行为之间的联系,有助于对锂电池进行数据驱动的热分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信