Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance

Zheng-xing Dai, Qing-qing Liu, Xiao-dong Qi, Nan Zhang, Ting Huang, Jing-hui Yang, Yong Wang
{"title":"Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance","authors":"Zheng-xing Dai, Qing-qing Liu, Xiao-dong Qi, Nan Zhang, Ting Huang, Jing-hui Yang, Yong Wang","doi":"10.1016/j.nanoms.2023.12.009","DOIUrl":null,"url":null,"abstract":"<p>For improving the actuation performance at low electric fields of dielectric elastomers, achieving high dielectric constant (<em>ɛ</em><sub><em>r</em></sub>) and low modulus (<em>Y</em>) simultaneously has been targeted in the past decades, but there are few ways to accomplish both. In contrast to the classical strategies such as incorporating plasticizers or ceramic to prepare the silicon-based dielectric elastomers, here, blending an amino-complexed hybrid (polyethyleneimine (PEI)-Ag) with polydimethylsiloxane (PDMS) elastomer is reported as an alternative strategy to tailor the <em>ɛ</em><sub><em>r</em></sub> and <em>Y</em>. PEI-Ag not only exhibits excellent dielectric enhancement properties but also minimizes the PDMS crosslinking through amino-complexed reaction between PEI and Pt catalysts. The prepared dielectric elastomers have a <em>ɛ</em><sub><em>r</em></sub> of 7.2 @ 10<sup>3</sup> ​Hz and <em>Y</em> of 1.14 ​MPa, leading to an actuation strain of 22.27 ​% at 35 ​V/μm. Hence, incorporating such novel hybrids based on dual amino-complexed effect on both matrix and particles sufficiently promotes the actuated performance of dielectric elastomers.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.nanoms.2023.12.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For improving the actuation performance at low electric fields of dielectric elastomers, achieving high dielectric constant (ɛr) and low modulus (Y) simultaneously has been targeted in the past decades, but there are few ways to accomplish both. In contrast to the classical strategies such as incorporating plasticizers or ceramic to prepare the silicon-based dielectric elastomers, here, blending an amino-complexed hybrid (polyethyleneimine (PEI)-Ag) with polydimethylsiloxane (PDMS) elastomer is reported as an alternative strategy to tailor the ɛr and Y. PEI-Ag not only exhibits excellent dielectric enhancement properties but also minimizes the PDMS crosslinking through amino-complexed reaction between PEI and Pt catalysts. The prepared dielectric elastomers have a ɛr of 7.2 @ 103 ​Hz and Y of 1.14 ​MPa, leading to an actuation strain of 22.27 ​% at 35 ​V/μm. Hence, incorporating such novel hybrids based on dual amino-complexed effect on both matrix and particles sufficiently promotes the actuated performance of dielectric elastomers.

Abstract Image

硅基介电弹性体与氨基络合混合物的高致动性能
为了提高介电弹性体在低电场下的致动性能,过去几十年来,人们一直致力于同时实现高介电常数(ɛr)和低模量(Y),但同时实现这两个目标的方法却不多。与加入增塑剂或陶瓷等传统方法制备硅基介电弹性体不同,本文报道了将氨基络合混合物(聚乙烯亚胺(PEI)-Ag)与聚二甲基硅氧烷(PDMS)弹性体混合作为定制ɛr 和 Y 的替代方法。所制备的介电弹性体的ɛr 为 7.2 @ 103 Hz,Y 为 1.14 MPa,在 35 V/μm 时的致动应变为 22.27 %。因此,在基体和颗粒中加入这种基于双氨基络合效应的新型混合材料,可充分提高介电弹性体的致动性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信