{"title":"Ramsey Numbers of Trees Versus Multiple Copies of Books","authors":"Xiao-bing Guo, Si-nan Hu, Yue-jian Peng","doi":"10.1007/s10255-024-1117-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given two graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G,H</i>) is the minimum integer <i>N</i> such that any two-coloring of the edges of <i>K</i><sub><i>N</i></sub> in red or blue yields a red <i>G</i> or a blue <i>H</i>. Let <i>v</i>(<i>G</i>) be the number of vertices of <i>G</i> and <i>χ</i>(<i>G</i>) be the chromatic number of <i>G</i>. Let <i>s</i>(<i>G</i>) denote the chromatic surplus of <i>G</i>, the number of vertices in a minimum color class among all proper <i>χ</i>(<i>G</i>)-colorings of <i>G</i>. Burr showed that <span>\\(R(G,H) \\ge (v(G) - 1)(\\chi (H) - 1) + s(H)\\)</span> if <i>G</i> is connected and <span>\\(v(G) \\ge s(H)\\)</span>. A connected graph <i>G</i> is <i>H</i>-good if <span>\\(R(G,H) = (v(G) - 1)(\\chi (H) - 1) + s(H)\\)</span>. Let <i>tH</i> denote the disjoint union of <i>t</i> copies of graph <i>H</i>, and let <span>\\(G \\vee H\\)</span> denote the join of <i>G</i> and <i>H</i>. Denote a complete graph on <i>n</i> vertices by <i>K</i><sub><i>n</i></sub>, and a tree on <i>n</i> vertices by <i>T</i><sub><i>n</i></sub>. Denote a book with <i>n</i> pages by <i>B</i><sub><i>n</i></sub>, i.e., the join <span>\\({K_2} \\vee \\overline {{K_n}} \\)</span>. Erdős, Faudree, Rousseau and Schelp proved that <i>T</i><sub><i>n</i></sub> is <i>B</i><sub><i>m</i></sub>-good if <span>\\(n \\ge 3m - 3\\)</span>. In this paper, we obtain the exact Ramsey number of <i>T</i><sub><i>n</i></sub> versus 2<i>B</i><sub>2</sub>- Our result implies that <i>T</i><sub><i>n</i></sub> is 2<i>B</i><sub>2</sub>-good if <i>n</i> ≥ 5.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"600 - 612"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1117-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given two graphs G and H, the Ramsey number R(G,H) is the minimum integer N such that any two-coloring of the edges of KN in red or blue yields a red G or a blue H. Let v(G) be the number of vertices of G and χ(G) be the chromatic number of G. Let s(G) denote the chromatic surplus of G, the number of vertices in a minimum color class among all proper χ(G)-colorings of G. Burr showed that \(R(G,H) \ge (v(G) - 1)(\chi (H) - 1) + s(H)\) if G is connected and \(v(G) \ge s(H)\). A connected graph G is H-good if \(R(G,H) = (v(G) - 1)(\chi (H) - 1) + s(H)\). Let tH denote the disjoint union of t copies of graph H, and let \(G \vee H\) denote the join of G and H. Denote a complete graph on n vertices by Kn, and a tree on n vertices by Tn. Denote a book with n pages by Bn, i.e., the join \({K_2} \vee \overline {{K_n}} \). Erdős, Faudree, Rousseau and Schelp proved that Tn is Bm-good if \(n \ge 3m - 3\). In this paper, we obtain the exact Ramsey number of Tn versus 2B2- Our result implies that Tn is 2B2-good if n ≥ 5.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.