{"title":"Ramsey Numbers of Trees Versus Multiple Copies of Books","authors":"Xiao-bing Guo, Si-nan Hu, Yue-jian Peng","doi":"10.1007/s10255-024-1117-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given two graphs <i>G</i> and <i>H</i>, the Ramsey number <i>R</i>(<i>G,H</i>) is the minimum integer <i>N</i> such that any two-coloring of the edges of <i>K</i><sub><i>N</i></sub> in red or blue yields a red <i>G</i> or a blue <i>H</i>. Let <i>v</i>(<i>G</i>) be the number of vertices of <i>G</i> and <i>χ</i>(<i>G</i>) be the chromatic number of <i>G</i>. Let <i>s</i>(<i>G</i>) denote the chromatic surplus of <i>G</i>, the number of vertices in a minimum color class among all proper <i>χ</i>(<i>G</i>)-colorings of <i>G</i>. Burr showed that <span>\\(R(G,H) \\ge (v(G) - 1)(\\chi (H) - 1) + s(H)\\)</span> if <i>G</i> is connected and <span>\\(v(G) \\ge s(H)\\)</span>. A connected graph <i>G</i> is <i>H</i>-good if <span>\\(R(G,H) = (v(G) - 1)(\\chi (H) - 1) + s(H)\\)</span>. Let <i>tH</i> denote the disjoint union of <i>t</i> copies of graph <i>H</i>, and let <span>\\(G \\vee H\\)</span> denote the join of <i>G</i> and <i>H</i>. Denote a complete graph on <i>n</i> vertices by <i>K</i><sub><i>n</i></sub>, and a tree on <i>n</i> vertices by <i>T</i><sub><i>n</i></sub>. Denote a book with <i>n</i> pages by <i>B</i><sub><i>n</i></sub>, i.e., the join <span>\\({K_2} \\vee \\overline {{K_n}} \\)</span>. Erdős, Faudree, Rousseau and Schelp proved that <i>T</i><sub><i>n</i></sub> is <i>B</i><sub><i>m</i></sub>-good if <span>\\(n \\ge 3m - 3\\)</span>. In this paper, we obtain the exact Ramsey number of <i>T</i><sub><i>n</i></sub> versus 2<i>B</i><sub>2</sub>- Our result implies that <i>T</i><sub><i>n</i></sub> is 2<i>B</i><sub>2</sub>-good if <i>n</i> ≥ 5.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1117-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given two graphs G and H, the Ramsey number R(G,H) is the minimum integer N such that any two-coloring of the edges of KN in red or blue yields a red G or a blue H. Let v(G) be the number of vertices of G and χ(G) be the chromatic number of G. Let s(G) denote the chromatic surplus of G, the number of vertices in a minimum color class among all proper χ(G)-colorings of G. Burr showed that \(R(G,H) \ge (v(G) - 1)(\chi (H) - 1) + s(H)\) if G is connected and \(v(G) \ge s(H)\). A connected graph G is H-good if \(R(G,H) = (v(G) - 1)(\chi (H) - 1) + s(H)\). Let tH denote the disjoint union of t copies of graph H, and let \(G \vee H\) denote the join of G and H. Denote a complete graph on n vertices by Kn, and a tree on n vertices by Tn. Denote a book with n pages by Bn, i.e., the join \({K_2} \vee \overline {{K_n}} \). Erdős, Faudree, Rousseau and Schelp proved that Tn is Bm-good if \(n \ge 3m - 3\). In this paper, we obtain the exact Ramsey number of Tn versus 2B2- Our result implies that Tn is 2B2-good if n ≥ 5.