{"title":"Multicolored Bipartite Ramsey Numbers of Large Cycles","authors":"Shao-qiang Liu, Yue-jian Peng","doi":"10.1007/s10255-024-1118-3","DOIUrl":null,"url":null,"abstract":"<div><p>For an integer <i>r</i> ≥ 2 and bipartite graphs <i>H</i><sub><i>i</i></sub>, where 1≤ <i>i</i> ≤ <i>r</i> the bipartite Ramsey number <i>br</i>(<i>H</i><sub>1</sub>, <i>H</i><sub>2</sub>, …, <i>H</i><sub><i>r</i></sub>) is the minimum integer <i>N</i> such that any <i>r</i>-edge coloring of the complete bipartite graph <i>K</i><sub><i>N,N</i></sub> contains a monochromatic subgraph isomorphic to <i>H</i><sub><i>i</i></sub> in color <i>i</i> for some 1 ≤ <i>i</i> ≤ <i>r</i>. We show that if <span>\\(r \\ge 3,{\\alpha _1},{\\alpha _2} > 0,{\\alpha _{j + 2}} \\ge [(j + 2)! - 1]\\sum\\limits_{i = 1}^{j + 1} {{\\alpha _i}} \\)</span> for <i>j</i> = 1, 2, …, <i>r</i> −2, then <span>\\(br({C_{2\\left\\lfloor {{\\alpha _1}\\,n} \\right\\rfloor }},{C_{2\\left\\lfloor {{\\alpha _2}\\,n} \\right\\rfloor }}, \\cdots ,{C_{2\\left\\lfloor {{\\alpha _r}\\,n} \\right\\rfloor }}) = (\\sum\\limits_{j = 1}^r {{\\alpha _j} + o(1))n} \\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1118-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For an integer r ≥ 2 and bipartite graphs Hi, where 1≤ i ≤ r the bipartite Ramsey number br(H1, H2, …, Hr) is the minimum integer N such that any r-edge coloring of the complete bipartite graph KN,N contains a monochromatic subgraph isomorphic to Hi in color i for some 1 ≤ i ≤ r. We show that if \(r \ge 3,{\alpha _1},{\alpha _2} > 0,{\alpha _{j + 2}} \ge [(j + 2)! - 1]\sum\limits_{i = 1}^{j + 1} {{\alpha _i}} \) for j = 1, 2, …, r −2, then \(br({C_{2\left\lfloor {{\alpha _1}\,n} \right\rfloor }},{C_{2\left\lfloor {{\alpha _2}\,n} \right\rfloor }}, \cdots ,{C_{2\left\lfloor {{\alpha _r}\,n} \right\rfloor }}) = (\sum\limits_{j = 1}^r {{\alpha _j} + o(1))n} \).