FESD-J: Finite Elements with Switch Detection for numerical optimal control of rigid bodies with impacts and Coulomb friction

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Armin Nurkanović , Jonathan Frey , Anton Pozharskiy , Moritz Diehl
{"title":"FESD-J: Finite Elements with Switch Detection for numerical optimal control of rigid bodies with impacts and Coulomb friction","authors":"Armin Nurkanović ,&nbsp;Jonathan Frey ,&nbsp;Anton Pozharskiy ,&nbsp;Moritz Diehl","doi":"10.1016/j.nahs.2023.101460","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The Finite Elements with Switch Detection (FESD) is a high-accuracy method for the numerical simulation and solution of </span>optimal control<span> problems subject to discontinuous ODEs. In this article, we extend the FESD method (Nurkanović et al., 2022) to the dynamic equations of multiple rigid bodies that exhibit state jumps due to impacts and </span></span>Coulomb friction<span>. This new method is referred to as FESD with Jumps (FESD-J). Starting from the standard Runge–Kutta equations, we let the integration step sizes be degrees of freedom. Additional constraints are introduced to ensure exact switch detection and to remove spurious degrees of freedom if no switches occur. Moreover, at the boundaries of each integration interval (finite element), we impose the impact equations in their complementarity form, at both the position and velocity level. They compute the normal and tangential impulses in case of contact making. Otherwise, they are reduced to the continuity conditions for the velocities. FESD-J treats multiple contacts, where each contact can have a different coefficient of restitution and friction. All methods introduced in this paper are implemented in the open-source software package NOSNOC (Nurkanović and Diehl, 2022). We illustrate the use of FESD-J in both simulation and optimal control examples.</span></p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"52 ","pages":"Article 101460"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X23001310","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Finite Elements with Switch Detection (FESD) is a high-accuracy method for the numerical simulation and solution of optimal control problems subject to discontinuous ODEs. In this article, we extend the FESD method (Nurkanović et al., 2022) to the dynamic equations of multiple rigid bodies that exhibit state jumps due to impacts and Coulomb friction. This new method is referred to as FESD with Jumps (FESD-J). Starting from the standard Runge–Kutta equations, we let the integration step sizes be degrees of freedom. Additional constraints are introduced to ensure exact switch detection and to remove spurious degrees of freedom if no switches occur. Moreover, at the boundaries of each integration interval (finite element), we impose the impact equations in their complementarity form, at both the position and velocity level. They compute the normal and tangential impulses in case of contact making. Otherwise, they are reduced to the continuity conditions for the velocities. FESD-J treats multiple contacts, where each contact can have a different coefficient of restitution and friction. All methods introduced in this paper are implemented in the open-source software package NOSNOC (Nurkanović and Diehl, 2022). We illustrate the use of FESD-J in both simulation and optimal control examples.

FESD-J:带开关检测的有限元,用于具有冲击和库仑摩擦的刚体的数值优化控制
带开关检测的有限元法(FESD)是一种高精度方法,用于数值模拟和求解不连续 ODE 的优化控制问题。在本文中,我们将 FESD 方法(Nurkanović 等人,2022 年)扩展到因撞击和库仑摩擦而出现状态跳跃的多刚体动态方程。这种新方法被称为带跃迁的 FESD(FESD-J)。从标准 Runge-Kutta 方程开始,我们让积分步长成为自由度。我们还引入了额外的约束条件,以确保精确检测开关,并在不发生开关的情况下去除虚假自由度。此外,在每个积分区间(有限元)的边界,我们在位置和速度两个层面上以互补形式强加了冲击方程。在发生接触的情况下,它们计算法向和切向脉冲。否则,它们将简化为速度的连续性条件。FESD-J 可处理多个接触点,其中每个接触点可能具有不同的恢复系数和摩擦系数。本文介绍的所有方法都在开源软件包 NOSNOC(Nurkanović 和 Diehl,2022 年)中实现。我们将在模拟和优化控制示例中说明 FESD-J 的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信