Chenghao Qian, Yao Yang, Gaofeng Wang, Anastasia Krikunova, Keqi Hu
{"title":"Effect of Gravity Orientation on Flickering Characteristics of Premixed Conical Flame","authors":"Chenghao Qian, Yao Yang, Gaofeng Wang, Anastasia Krikunova, Keqi Hu","doi":"10.1007/s12217-023-10088-3","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental and numerical simulation methods were employed to investigate the effect of gravity orientation on the dynamics of premixed conical flames. The study focused on a typical propane-air flame established on a Bunsen burner, under normal gravity (+ g), reverse gravity (-g), and transverse gravity (⊥g). In the initial phase of the research, flame shapes were examined using flame chemiluminescence imaging. Result shows that gravity orientation has a slight impact on the flame height, and buoyancy caused flame asymmetry in ⊥g case is first discovered. In addition, flame flickering frequencies were collected through heat release signal experiments, and a wide range of data is acquired. Though being affected by the same pattern by equivalence ratio and Reynolds number, the frequencies in ⊥g case are generally lower than those in + g case. Based on this, the research also obtained the new empirical correlation for ⊥g case. For clearer explanations of the flame behavior under different gravity orientations, velocity fields were visualization using Particle Image Velocimetry (PIV) experiments and Direct Numerical Simulation (DNS). Results indicated that the gravity orientation mainly influences the flame through effects on shear layer between ambient air and burnt gas, which cause different forms of K-H instability and vortex shedding motions.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10088-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental and numerical simulation methods were employed to investigate the effect of gravity orientation on the dynamics of premixed conical flames. The study focused on a typical propane-air flame established on a Bunsen burner, under normal gravity (+ g), reverse gravity (-g), and transverse gravity (⊥g). In the initial phase of the research, flame shapes were examined using flame chemiluminescence imaging. Result shows that gravity orientation has a slight impact on the flame height, and buoyancy caused flame asymmetry in ⊥g case is first discovered. In addition, flame flickering frequencies were collected through heat release signal experiments, and a wide range of data is acquired. Though being affected by the same pattern by equivalence ratio and Reynolds number, the frequencies in ⊥g case are generally lower than those in + g case. Based on this, the research also obtained the new empirical correlation for ⊥g case. For clearer explanations of the flame behavior under different gravity orientations, velocity fields were visualization using Particle Image Velocimetry (PIV) experiments and Direct Numerical Simulation (DNS). Results indicated that the gravity orientation mainly influences the flame through effects on shear layer between ambient air and burnt gas, which cause different forms of K-H instability and vortex shedding motions.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology