Correlation between the particle size of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and lithium-ion transport in composite cathodes for all-solid-state lithium-ion batteries
Jae-Ho Park, Mingony Kim, Min-Young Kim, Jiwon Jeong, Hun-Gi Jung, Woo Young Yoon, Kyung Yoon Chung
{"title":"Correlation between the particle size of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and lithium-ion transport in composite cathodes for all-solid-state lithium-ion batteries","authors":"Jae-Ho Park, Mingony Kim, Min-Young Kim, Jiwon Jeong, Hun-Gi Jung, Woo Young Yoon, Kyung Yoon Chung","doi":"10.1016/j.cej.2023.148436","DOIUrl":null,"url":null,"abstract":"<p>Solid electrolytes (SEs) are key materials for all-solid-state lithium-ion batteries (ASSLBs), and are being studied for various applications. Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP), a NASICON-type SE, is noteworthy due to its wide voltage range for cathode operation and economic feasibility. However, fabricating well-contacted interparticle interfaces in composite cathodes using LATP is challenging because of its high grain-boundary resistance. To address this issue, we investigated the correlation between lithium-ion transport in composite cathodes and the particle size of LATP. We successfully synthesized two LATPs with different size distributions and prepared composite cathodes. Performance evaluation and various advanced analyses of composite cathodes were conducted, the results revealed that LATP with a smaller particle-size distribution formed more a uniform Li<sup>+</sup> transfer network in the composite cathode than the larger particles, which contributed to the stable and fast electrochemical characteristics of the ASSLB. Additionally, we also observed real-time structural changes during electrochemical reactions in composite cathodes through <em>in situ</em> X-ray diffraction analysis. The results of our comprehensive analysis are expected to provide valuable insights into the reaction mechanisms of LATP-based ASSLBs, as they have not been extensively explored before.</p>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2023.148436","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid electrolytes (SEs) are key materials for all-solid-state lithium-ion batteries (ASSLBs), and are being studied for various applications. Li1.3Al0.3Ti1.7(PO4)3 (LATP), a NASICON-type SE, is noteworthy due to its wide voltage range for cathode operation and economic feasibility. However, fabricating well-contacted interparticle interfaces in composite cathodes using LATP is challenging because of its high grain-boundary resistance. To address this issue, we investigated the correlation between lithium-ion transport in composite cathodes and the particle size of LATP. We successfully synthesized two LATPs with different size distributions and prepared composite cathodes. Performance evaluation and various advanced analyses of composite cathodes were conducted, the results revealed that LATP with a smaller particle-size distribution formed more a uniform Li+ transfer network in the composite cathode than the larger particles, which contributed to the stable and fast electrochemical characteristics of the ASSLB. Additionally, we also observed real-time structural changes during electrochemical reactions in composite cathodes through in situ X-ray diffraction analysis. The results of our comprehensive analysis are expected to provide valuable insights into the reaction mechanisms of LATP-based ASSLBs, as they have not been extensively explored before.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.