Topology and Admittance Estimation: Precision Limits and Algorithms

iEnergy Pub Date : 2023-11-30 DOI:10.23919/IEN.2023.0035
Ning Zhang;Yuxiao Liu;Fangyuan Si;Qingchun Hou;Audun Botterud;Chongqing Kang
{"title":"Topology and Admittance Estimation: Precision Limits and Algorithms","authors":"Ning Zhang;Yuxiao Liu;Fangyuan Si;Qingchun Hou;Audun Botterud;Chongqing Kang","doi":"10.23919/IEN.2023.0035","DOIUrl":null,"url":null,"abstract":"Distribution grid topology and admittance information are essential for system planning, operation, and protection. In many distribution grids, missing or inaccurate topology and admittance data call for efficient estimation methods. However, measurement data may be insufficient or contaminated with large noise, which will fundamentally limit the estimation accuracy. This work explores the theoretical precision limits of the topology and admittance estimation (TAE) problem with different measurement devices, noise levels, and numbers of measurements. On this basis, we propose a conservative progressive self-adaptive (CPS) algorithm to estimate the topology and admittance. The results on IEEE 33 and 141-bus systems validate that the proposed CPS method can approach the theoretical precision limits under various measurement settings.","PeriodicalId":100648,"journal":{"name":"iEnergy","volume":"2 4","pages":"297-307"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10336732","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iEnergy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10336732/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution grid topology and admittance information are essential for system planning, operation, and protection. In many distribution grids, missing or inaccurate topology and admittance data call for efficient estimation methods. However, measurement data may be insufficient or contaminated with large noise, which will fundamentally limit the estimation accuracy. This work explores the theoretical precision limits of the topology and admittance estimation (TAE) problem with different measurement devices, noise levels, and numbers of measurements. On this basis, we propose a conservative progressive self-adaptive (CPS) algorithm to estimate the topology and admittance. The results on IEEE 33 and 141-bus systems validate that the proposed CPS method can approach the theoretical precision limits under various measurement settings.
拓扑和导纳估计:精度极限和算法
配电网拓扑和导纳信息对于系统规划、运行和保护至关重要。在许多配电网中,拓扑和导纳数据的缺失或不准确要求采用高效的估算方法。然而,测量数据可能不足或受到较大噪声的污染,这将从根本上限制估算精度。本研究探讨了拓扑和导纳估算(TAE)问题在不同测量设备、噪声水平和测量次数下的理论精度极限。在此基础上,我们提出了一种保守渐进自适应(CPS)算法来估计拓扑和导纳。在 IEEE 33 和 141 总线系统上的结果验证了所提出的 CPS 方法可以在各种测量设置下接近理论精度极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信