{"title":"Intracerebral fate of organic and inorganic nanoparticles is dependent on microglial extracellular vesicle function","authors":"Jinchao Gao, Qingxiang Song, Xiao Gu, Gan Jiang, Jialin Huang, Yuyun Tang, Renhe Yu, Antian Wang, Yukun Huang, Gang Zheng, Hongzhuan Chen, Xiaoling Gao","doi":"10.1038/s41565-023-01551-8","DOIUrl":null,"url":null,"abstract":"Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood–brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs. Nanoparticle clearance is critical for safety and therapeutic applicability. Here the authors report the modulatory role of microglial extracellular vesicles on the brain clearance of organic and inorganic nanoparticles and provide a strategy to control their intracerebral fate.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 3","pages":"376-386"},"PeriodicalIF":34.9000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01551-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles (NPs) represent an important advance for delivering diagnostic and therapeutic agents across the blood–brain barrier. However, NP clearance is critical for safety and therapeutic applicability. Here we report on a study of the clearance of model organic and inorganic NPs from the brain. We find that microglial extracellular vesicles (EVs) play a crucial role in the clearance of inorganic and organic NPs from the brain. Inorganic NPs, unlike organic NPs, perturb the biogenesis of microglial EVs through the inhibition of ERK1/2 signalling. This increases the accumulation of inorganic NPs in microglia, hindering their elimination via the paravascular route. We also demonstrate that stimulating the release of microglial EVs by an ERK1/2 activator increased the paravascular glymphatic pathway-mediated brain clearance of inorganic NPs. These findings highlight the modulatory role of microglial EVs on the distinct patterns of the clearance of organic and inorganic NPs from the brain and provide a strategy for modulating the intracerebral fate of NPs. Nanoparticle clearance is critical for safety and therapeutic applicability. Here the authors report the modulatory role of microglial extracellular vesicles on the brain clearance of organic and inorganic nanoparticles and provide a strategy to control their intracerebral fate.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.