Golden eagle based improved Att-BiLSTM model for big data classification with hybrid feature extraction and feature selection techniques.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Network-Computation in Neural Systems Pub Date : 2024-05-01 Epub Date: 2023-12-28 DOI:10.1080/0954898X.2023.2293895
Gnanendra Kotikam, Lokesh Selvaraj
{"title":"Golden eagle based improved Att-BiLSTM model for big data classification with hybrid feature extraction and feature selection techniques.","authors":"Gnanendra Kotikam, Lokesh Selvaraj","doi":"10.1080/0954898X.2023.2293895","DOIUrl":null,"url":null,"abstract":"<p><p>The remarkable development in technology has led to the increase of massive big data. Machine learning processes provide a way for investigators to examine and particularly classify big data. Besides, several machine learning models rely on powerful feature extraction and feature selection techniques for their success. In this paper, a big data classification approach is developed using an optimized deep learning classifier integrated with hybrid feature extraction and feature selection approaches. The proposed technique uses local linear embedding-based kernel principal component analysis and perturbation theory, respectively, to extract more representative data and select the appropriate features from the big data environment. In addition, the feature selection task is fine-tuned by using perturbation theory through heuristic search based on their output accuracy. This feature selection heuristic search method is analysed with five recent heuristic optimization algorithms for deciding the final feature subset. Finally, the data are categorized through an attention-based bidirectional long short-term memory classifier that is optimized with a golden eagle-inspired algorithm. The performance of the proposed model is experimentally verified on publicly accessible datasets. From the experimental outcomes, it is demonstrated that the proposed framework is capable of classifying large datasets with more than 90% accuracy.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"154-189"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2293895","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The remarkable development in technology has led to the increase of massive big data. Machine learning processes provide a way for investigators to examine and particularly classify big data. Besides, several machine learning models rely on powerful feature extraction and feature selection techniques for their success. In this paper, a big data classification approach is developed using an optimized deep learning classifier integrated with hybrid feature extraction and feature selection approaches. The proposed technique uses local linear embedding-based kernel principal component analysis and perturbation theory, respectively, to extract more representative data and select the appropriate features from the big data environment. In addition, the feature selection task is fine-tuned by using perturbation theory through heuristic search based on their output accuracy. This feature selection heuristic search method is analysed with five recent heuristic optimization algorithms for deciding the final feature subset. Finally, the data are categorized through an attention-based bidirectional long short-term memory classifier that is optimized with a golden eagle-inspired algorithm. The performance of the proposed model is experimentally verified on publicly accessible datasets. From the experimental outcomes, it is demonstrated that the proposed framework is capable of classifying large datasets with more than 90% accuracy.

基于金鹰的改进型 Att-BiLSTM 模型,采用混合特征提取和特征选择技术进行大数据分类。
技术的飞速发展导致了海量大数据的增加。机器学习过程为研究人员提供了一种对大数据进行检查和分类的方法。此外,一些机器学习模型的成功依赖于强大的特征提取和特征选择技术。本文开发了一种大数据分类方法,使用优化的深度学习分类器与混合特征提取和特征选择方法相结合。所提出的技术分别使用基于局部线性嵌入的内核主成分分析和扰动理论,从大数据环境中提取更具代表性的数据并选择合适的特征。此外,利用扰动理论通过启发式搜索,根据其输出精度对特征选择任务进行微调。这种特征选择启发式搜索方法与五种最新的启发式优化算法进行了分析,以决定最终的特征子集。最后,通过基于注意力的双向长短期记忆分类器对数据进行分类,该分类器采用金鹰启发算法进行优化。所提模型的性能在可公开获取的数据集上得到了实验验证。实验结果表明,所提出的框架能够对大型数据集进行分类,准确率超过 90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信