Performance prediction of VO2-based smart radiation devices through semi-self-supervised learning with phase transition adaptation

Yanyu Chen , Tao Zhao , Yanke Chang , Jinxin Gu , Wei Ma , Shuliang Dou , Yao Li
{"title":"Performance prediction of VO2-based smart radiation devices through semi-self-supervised learning with phase transition adaptation","authors":"Yanyu Chen ,&nbsp;Tao Zhao ,&nbsp;Yanke Chang ,&nbsp;Jinxin Gu ,&nbsp;Wei Ma ,&nbsp;Shuliang Dou ,&nbsp;Yao Li","doi":"10.1016/j.nxener.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately forecasting the infrared radiation properties of multilayer systems exhibiting phase transition behavior presents a formidable challenge. In this study, we propose a physically-inspired Phase Transition Adaptation Model (PTAM) that leverages a deep neural network with a branching architecture, coupled with an analytical optical solver. Given the inherent difficulty in accurately measuring film thickness and the inability to test optical constants in situ, we employ a semi-self-supervised learning strategy and train the model exclusively using experimental twin spectral data generated by VO<sub>2</sub>-based smart radiation devices (SRDs) during the thermal phase transition process. Our proposed model exhibits remarkable proficiency in capturing spatial distribution information pertaining to material characteristics in multilayer systems possessing thermochromic phenomena. Additionally, it demonstrates exceptional accuracy in predicting the radiation regulation performance of such systems. These advances have significant implications for the cost-effective and efficient development of SRDs. In line with the pressing need to combat climate change and promote sustainable energy practices, this research makes a vital contribution to the quest for a more sustainable future.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X23000455/pdfft?md5=0efd279e2ab872dd3d364d95bf76b87a&pid=1-s2.0-S2949821X23000455-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X23000455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately forecasting the infrared radiation properties of multilayer systems exhibiting phase transition behavior presents a formidable challenge. In this study, we propose a physically-inspired Phase Transition Adaptation Model (PTAM) that leverages a deep neural network with a branching architecture, coupled with an analytical optical solver. Given the inherent difficulty in accurately measuring film thickness and the inability to test optical constants in situ, we employ a semi-self-supervised learning strategy and train the model exclusively using experimental twin spectral data generated by VO2-based smart radiation devices (SRDs) during the thermal phase transition process. Our proposed model exhibits remarkable proficiency in capturing spatial distribution information pertaining to material characteristics in multilayer systems possessing thermochromic phenomena. Additionally, it demonstrates exceptional accuracy in predicting the radiation regulation performance of such systems. These advances have significant implications for the cost-effective and efficient development of SRDs. In line with the pressing need to combat climate change and promote sustainable energy practices, this research makes a vital contribution to the quest for a more sustainable future.

Abstract Image

通过具有相变适应性的半自我监督学习预测基于 VO2 的智能辐射装置的性能
准确预测表现出相变行为的多层系统的红外辐射特性是一项艰巨的挑战。在这项研究中,我们提出了一种受物理启发的相变适应模型(PTAM),该模型利用了具有分支结构的深度神经网络,并结合了分析光学求解器。考虑到精确测量薄膜厚度的固有困难以及无法现场测试光学常数,我们采用了半自我监督学习策略,并完全使用基于 VO2 的智能辐射装置(SRD)在热相变过程中生成的实验双光谱数据来训练模型。我们提出的模型在捕捉具有热致变色现象的多层系统中与材料特性相关的空间分布信息方面表现出了卓越的能力。此外,该模型在预测此类系统的辐射调节性能方面也表现出了极高的准确性。这些进展对于经济高效地开发自润滑薄膜具有重要意义。随着应对气候变化和促进可持续能源实践的迫切需要,这项研究为追求更可持续的未来做出了重要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信