Protective hydrothermal treatment to improve ion pathway in Ti3C2Tx MXene for high-performance flexible supercapacitors

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
M. Lai , K. Chen , D. Wang , P. Cai , L. Sun , K. Zhang , B. Li , C. Yuan , Y. Zou , Z. Wang , H. Peng
{"title":"Protective hydrothermal treatment to improve ion pathway in Ti3C2Tx MXene for high-performance flexible supercapacitors","authors":"M. Lai ,&nbsp;K. Chen ,&nbsp;D. Wang ,&nbsp;P. Cai ,&nbsp;L. Sun ,&nbsp;K. Zhang ,&nbsp;B. Li ,&nbsp;C. Yuan ,&nbsp;Y. Zou ,&nbsp;Z. Wang ,&nbsp;H. Peng","doi":"10.1016/j.mtnano.2023.100450","DOIUrl":null,"url":null,"abstract":"<div><p>The strong re-stacking of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub><span><span><span> MXene<span> nanosheets severely blocks ion transport pathway and sacrifices </span></span>electrochemical performance. Here, a protective </span>hydrothermal treatment is used to improve ion pathway in Ti</span><sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene. The protective hydrothermal treatment is simply conducted in the hydrothermal kettle (filled with N<sub>2</sub> atmosphere) placed in vacuum oven. The optimal Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> is achieved by the hydrothermal treatment of 150 °C for 12h, and recorded as h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h. The h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub><span>@150 °C/12h film electrode achieves significantly improved ion transport pathways and enhanced ion accessibility with more pseudocapacitive active sites due to the increased interlayer spacing and pores as well as decreased flake size. According to DFT calculations, a small number of oxides (TiO</span><sub>2</sub> nanoparticles) produced during the hydrothermal treatment also facilitate to increase the capacitive performance of h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h. Therefore, the h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h film electrode achieves significantly increased capacitance and rate performance. The h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h film electrode exhibits excellent capacitance (498.3 F g<sup>−1</sup> and 1911 F cm<sup>−3</sup> at 1 A g<sup>−1</sup>) and rate performance (63 % retention from 1 to 20 A g<sup>−1</sup>) with high cycling stability (98.2 % retention after 20 000 cycles), which are among the best electrochemical performances of undoped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> based film electrodes reported so far. Thick h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h film electrode of 33.1 μm thickness exhibits an ultra-high areal capacitance of 3.23 F cm<sup>−2</sup> at 1 A g<sup>−1</sup>. Moreover, the h-Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub><span>@150 °C/12h-based flexible symmetric supercapacitor device exhibits excellent energy storage performance (117 F g</span><sup>−1</sup> at 0.5 A g<sup>−1</sup> and 23.4 Wh kg<sup>−1</sup> at 299.8 W kg<sup>−1</sup>) with high cycling stability (84 % retention after 3000 cycles) and bending stability, outperforming most of previously reported Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub><span>-based flexible supercapacitors. The impressive results indicate the great application potential of the h-Ti</span><sub>3</sub>C<sub>2</sub>T<sub>x</sub>@150 °C/12h film in flexible energy storage devices.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100450"},"PeriodicalIF":8.2000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842023001499","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strong re-stacking of Ti3C2Tx MXene nanosheets severely blocks ion transport pathway and sacrifices electrochemical performance. Here, a protective hydrothermal treatment is used to improve ion pathway in Ti3C2Tx MXene. The protective hydrothermal treatment is simply conducted in the hydrothermal kettle (filled with N2 atmosphere) placed in vacuum oven. The optimal Ti3C2Tx is achieved by the hydrothermal treatment of 150 °C for 12h, and recorded as h-Ti3C2Tx@150 °C/12h. The h-Ti3C2Tx@150 °C/12h film electrode achieves significantly improved ion transport pathways and enhanced ion accessibility with more pseudocapacitive active sites due to the increased interlayer spacing and pores as well as decreased flake size. According to DFT calculations, a small number of oxides (TiO2 nanoparticles) produced during the hydrothermal treatment also facilitate to increase the capacitive performance of h-Ti3C2Tx@150 °C/12h. Therefore, the h-Ti3C2Tx@150 °C/12h film electrode achieves significantly increased capacitance and rate performance. The h-Ti3C2Tx@150 °C/12h film electrode exhibits excellent capacitance (498.3 F g−1 and 1911 F cm−3 at 1 A g−1) and rate performance (63 % retention from 1 to 20 A g−1) with high cycling stability (98.2 % retention after 20 000 cycles), which are among the best electrochemical performances of undoped Ti3C2Tx based film electrodes reported so far. Thick h-Ti3C2Tx@150 °C/12h film electrode of 33.1 μm thickness exhibits an ultra-high areal capacitance of 3.23 F cm−2 at 1 A g−1. Moreover, the h-Ti3C2Tx@150 °C/12h-based flexible symmetric supercapacitor device exhibits excellent energy storage performance (117 F g−1 at 0.5 A g−1 and 23.4 Wh kg−1 at 299.8 W kg−1) with high cycling stability (84 % retention after 3000 cycles) and bending stability, outperforming most of previously reported Ti3C2Tx-based flexible supercapacitors. The impressive results indicate the great application potential of the h-Ti3C2Tx@150 °C/12h film in flexible energy storage devices.

通过保护性水热处理改善 Ti3C2Tx MXene 中的离子通道,实现高性能柔性超级电容器
Ti3C2Tx MXene 纳米片的强烈再堆叠严重阻塞了离子传输通道,影响了电化学性能。在此,我们采用保护性水热处理来改善 Ti3C2Tx MXene 的离子通道。保护性水热处理只需在真空烘箱中的水热釜(充满 N2 大气)中进行。最佳的 Ti3C2Tx 是在 150 °C 水热处理 12 小时后得到的,记为 h-Ti3C2Tx@150°C/12小时。h-Ti3C2Tx@150 °C/12小时薄膜电极的离子传输路径明显改善,离子可及性也得到提高,由于层间间距和孔隙增大以及薄片尺寸减小,具有更多的伪电容活性位点。根据 DFT 计算,水热处理过程中产生的少量氧化物(TiO2 纳米颗粒)也有助于提高 h-Ti3C2Tx@150 °C/12h 的电容性能。因此,h-Ti3C2Tx@150 °C/12h薄膜电极的电容和速率性能显著提高。h-Ti3C2Tx@150 °C/12h 薄膜电极具有出色的电容(498.3 F g-1,1 A g-1 时为 1911 F cm-3)和速率性能(从 1 到 20 A g-1 的保持率为 63%)以及较高的循环稳定性(20,000 次循环后保持率为 98.2%),是目前报道的未掺杂 Ti3C2Tx 基薄膜电极中电化学性能最好的电极之一。厚度为 33.1 μm 的厚 h-Ti3C2Tx@150 °C/12h 薄膜电极在 1 A g-1 的条件下显示出 3.23 F cm-2 的超高等值电容。此外,基于 h-Ti3C2Tx@150 °C/12h 的柔性对称超级电容器器件具有优异的储能性能(在 0.5 A g-1 时为 117 F g-1,在 299.8 W kg-1 时为 23.4 Wh kg-1)、高循环稳定性(3000 次循环后保持率为 84%)和弯曲稳定性,优于之前报道的大多数基于 Ti3C2Tx 的柔性超级电容器。这些令人印象深刻的结果表明了 h-Ti3C2Tx@150 °C/12h 薄膜在柔性储能设备中的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信