{"title":"Evaluating the Impact of the Development of the Chayanda Field on Surface Ground Subsidence","authors":"V. S. Zhukov, D. K. Kuzmin","doi":"10.1134/s000143382307006x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper we present the results of studies of the Botuobin, Talakh, and Khamakin reservoirs of the Vendian period in the Chayanda hydrocarbon field (Eastern Siberia). Based on an analysis of variations in the petrophysical parameters of reservoirs upon an increase in effective pressure from 37 to 57 MPa, i.e., under conditions simulating the development of a field for depletion, changes in the volume and compressibility of the pore space are estimated. In this case, the porosity coefficient decreases by 0.043 abs. %, while the compressibility of the pore space decreases by 0.228 1/GPa. The average volumetric compression strain increases by 0.096%, which means a reduction in the volume of developed reservoirs by almost 0.1% relative to the beginning of development. A deformable formation model developed by Yu.O. Kuzmin based on the geodynamic history of the development of deposits is applied to estimate the magnitude of possible subsidence of the ground surface during development. The maximal values of possible surface subsidence (drawdowns) upon a decrease in reservoir fluid pressure by 5 MPa are estimated to be 0.33 m with allowance for the dynamics of petrophysical parameters and 0.335 m with no allowance for it. The maximal drawdowns are already estimated at 0.60 and 0.65 m upon a decrease in reservoir pressure by 10 MPa and 0.78 and 0.83 m upon a complete depletion of reservoir energy, respectively. The results of the studies show that taking into account the changes in petrophysical characteristics caused by the field development processes alters the estimate of the deformation state of the rock massif and the ground surface above the deposit and, consequently, the estimate of the level of geodynamic risk of oil-and-gas complex objects.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s000143382307006x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we present the results of studies of the Botuobin, Talakh, and Khamakin reservoirs of the Vendian period in the Chayanda hydrocarbon field (Eastern Siberia). Based on an analysis of variations in the petrophysical parameters of reservoirs upon an increase in effective pressure from 37 to 57 MPa, i.e., under conditions simulating the development of a field for depletion, changes in the volume and compressibility of the pore space are estimated. In this case, the porosity coefficient decreases by 0.043 abs. %, while the compressibility of the pore space decreases by 0.228 1/GPa. The average volumetric compression strain increases by 0.096%, which means a reduction in the volume of developed reservoirs by almost 0.1% relative to the beginning of development. A deformable formation model developed by Yu.O. Kuzmin based on the geodynamic history of the development of deposits is applied to estimate the magnitude of possible subsidence of the ground surface during development. The maximal values of possible surface subsidence (drawdowns) upon a decrease in reservoir fluid pressure by 5 MPa are estimated to be 0.33 m with allowance for the dynamics of petrophysical parameters and 0.335 m with no allowance for it. The maximal drawdowns are already estimated at 0.60 and 0.65 m upon a decrease in reservoir pressure by 10 MPa and 0.78 and 0.83 m upon a complete depletion of reservoir energy, respectively. The results of the studies show that taking into account the changes in petrophysical characteristics caused by the field development processes alters the estimate of the deformation state of the rock massif and the ground surface above the deposit and, consequently, the estimate of the level of geodynamic risk of oil-and-gas complex objects.
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.