Mona H. Gomaa, Ahmed Ibrahim, Kh. El-Sayed, Z. Abdel Hamid
{"title":"Boosting the hydrophobicity of eco-friendly polyaniline coating using TiO2 and ZnO nanoparticles","authors":"Mona H. Gomaa, Ahmed Ibrahim, Kh. El-Sayed, Z. Abdel Hamid","doi":"10.1002/sia.7280","DOIUrl":null,"url":null,"abstract":"This article clarifies the thin layer deposition of superhydrophobic coating using eco-friendly polymer (polyaniline [PANI]) incorporated with TiO<sub>2</sub> and ZnO nanoparticles on indium tin oxide substrate. Using the cyclic voltammetry method, in situ polymerization of PANI incorporated with hybrid (TiO<sub>2</sub>–ZnO) was accomplished. The morphology and hydrophobicity of electro-deposited films were examined; the impact of deposition cycles was also investigated. The morphological structure was studied using field-emission scanning electron microscopy and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis proved the incorporation of nanoparticles into the composite matrix. Additionally, the water contact angle of the PANI composite was found to be 150.4°, and the findings reflected that (TiO<sub>2</sub>–ZnO) nanoparticles were significantly implicated in enhancing this superhydrophobicity. The surface roughness of the PANI matrix was increased when TiO<sub>2</sub> and ZnO are added, as was shown by atomic force microscope investigation.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7280","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article clarifies the thin layer deposition of superhydrophobic coating using eco-friendly polymer (polyaniline [PANI]) incorporated with TiO2 and ZnO nanoparticles on indium tin oxide substrate. Using the cyclic voltammetry method, in situ polymerization of PANI incorporated with hybrid (TiO2–ZnO) was accomplished. The morphology and hydrophobicity of electro-deposited films were examined; the impact of deposition cycles was also investigated. The morphological structure was studied using field-emission scanning electron microscopy and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis proved the incorporation of nanoparticles into the composite matrix. Additionally, the water contact angle of the PANI composite was found to be 150.4°, and the findings reflected that (TiO2–ZnO) nanoparticles were significantly implicated in enhancing this superhydrophobicity. The surface roughness of the PANI matrix was increased when TiO2 and ZnO are added, as was shown by atomic force microscope investigation.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).