{"title":"A high-precision frequency measurement method combining π-type delay chain and different frequency phase coincidence detection","authors":"Baoqiang Du, Wenming Li","doi":"10.1007/s10470-023-02220-5","DOIUrl":null,"url":null,"abstract":"<div><p>A high-precision frequency measurement method combining π-type delay chain and different frequency phase coincidence detection is proposed based on different frequency phase comparison. A delay chain is used to delay the frequency standard signal. The coarse delay can generate more phase coincidence points at the key position of the reference gate, which can easily form a high-precision actual gate and realize a fast response time of the frequency measurement. The fine delay can achieve an ultra-high measurement resolution better than picoseconds without changing the frequency relationship between the frequency standard signal and the measured signal. The experimental results show that the proposed method has a high frequency accuracy and stability. Compared with the traditional frequency detection method, it has the advantages of simple circuit, fast measurement speed, and high measurement accuracy. Therefore, it can be widely used in satellite navigation, space positioning, metrology, communication, precision time–frequency measurement, and other fields.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 1","pages":"147 - 155"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02220-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
A high-precision frequency measurement method combining π-type delay chain and different frequency phase coincidence detection is proposed based on different frequency phase comparison. A delay chain is used to delay the frequency standard signal. The coarse delay can generate more phase coincidence points at the key position of the reference gate, which can easily form a high-precision actual gate and realize a fast response time of the frequency measurement. The fine delay can achieve an ultra-high measurement resolution better than picoseconds without changing the frequency relationship between the frequency standard signal and the measured signal. The experimental results show that the proposed method has a high frequency accuracy and stability. Compared with the traditional frequency detection method, it has the advantages of simple circuit, fast measurement speed, and high measurement accuracy. Therefore, it can be widely used in satellite navigation, space positioning, metrology, communication, precision time–frequency measurement, and other fields.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.