Stability analysis of partial journal bearings lubricated with micropolar fluid

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Sanyam Sharma, Rajiv Verma
{"title":"Stability analysis of partial journal bearings lubricated with micropolar fluid","authors":"Sanyam Sharma, Rajiv Verma","doi":"10.1108/ilt-06-2023-0167","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":"65 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-06-2023-0167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to investigate the stability performance of partial journal bearings of 120° and 180° partial angles with micropolar lubricant.

Design/methodology/approach

To investigate the stability characteristics of partial journal bearing, a MATLAB source code is written. To solve the Reynolds’ equation, the finite element method is used. Stability performances of 120° and 180° partial journal bearings are computed for a wide range of non-dimensional micropolar fluid parameters and working eccentricities.

Findings

The presented results provide design data for stability parameters in terms of equivalent stiffness, whirl frequency ratio, critical mass and threshold speed of the rotor with respect to eccentricities and material size of the lubricant. The stability of 180° partial journal bearing is found to be higher than 120° partial journal bearing.

Originality/value

In open literature, it is rare to find the stability of a partial journal bearing lubricated with micropolar fluid. Very few researchers have studied the combined effect of eccentricities and micropolar lubricant parameters on the dynamic performance of such bearings. Hence, it is important to study the dynamic stability to explore the complete investigation of the performance of partial journal bearings with micropolar fluid.

用微极性流体润滑的部分轴颈轴承的稳定性分析
设计/方法/途径为了研究局部轴颈轴承的稳定性能,我们编写了 MATLAB 源代码。采用有限元法求解雷诺方程。计算了 120° 和 180° 部分轴颈轴承在各种非尺寸微波流体参数和工作偏心率下的稳定性能。研究结果所提供的结果提供了与偏心率和润滑剂材料尺寸有关的转子等效刚度、旋速比、临界质量和临界转速等稳定性参数的设计数据。180° 部分轴颈轴承的稳定性高于 120° 部分轴颈轴承。很少有研究人员研究偏心率和微油润滑剂参数对此类轴承动态性能的综合影响。因此,研究动态稳定性对于全面调查使用微阳极流体的部分轴颈轴承的性能非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信