A simple model for internal transport barrier induced by fishbone in tokamak plasmas

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Zhaoyang Liu, Guoyong Fu
{"title":"A simple model for internal transport barrier induced by fishbone in tokamak plasmas","authors":"Zhaoyang Liu, Guoyong Fu","doi":"10.1017/s0022377823001344","DOIUrl":null,"url":null,"abstract":"<p>Fishbone bursts have been observed to strongly correlate to internal transport barrier (ITB) formation in a number of tokamak devices. A simple model incorporating the fishbone dynamics and ion pressure gradient evolution is proposed in order to investigate the key physics parameters assisting the triggering of ITB. The time evolution of fishbone is described by the well-known predator–prey model. For each burst cycle, the energetic particles (EPs) resonantly interact with fishbone and are radially expelled from inner region leading to a radial current. A compensating bulk plasma return current and, hence, poloidal flow can be induced if the fishbone cycle frequency is greater than the poloidal flow damping rate. When the shear of the poloidal flow exceeds a critical value, the turbulent fluctuations are suppressed and the bulk ion pressure gradient transits to the high-confinement state. It is shown that this process is only sensitive to the deposition rate of the trapped EPs within the <span><span><span data-mathjax-type=\"texmath\"><span>$q=1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231227145526428-0286:S0022377823001344:S0022377823001344_inline1.png\"/></span></span> surface, but not sensitive to other parameters. A quantitative formula for the shearing rate of poloidal flow induced by fishbone bursts is derived and verified numerically.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823001344","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Fishbone bursts have been observed to strongly correlate to internal transport barrier (ITB) formation in a number of tokamak devices. A simple model incorporating the fishbone dynamics and ion pressure gradient evolution is proposed in order to investigate the key physics parameters assisting the triggering of ITB. The time evolution of fishbone is described by the well-known predator–prey model. For each burst cycle, the energetic particles (EPs) resonantly interact with fishbone and are radially expelled from inner region leading to a radial current. A compensating bulk plasma return current and, hence, poloidal flow can be induced if the fishbone cycle frequency is greater than the poloidal flow damping rate. When the shear of the poloidal flow exceeds a critical value, the turbulent fluctuations are suppressed and the bulk ion pressure gradient transits to the high-confinement state. It is shown that this process is only sensitive to the deposition rate of the trapped EPs within the $q=1$Abstract Image surface, but not sensitive to other parameters. A quantitative formula for the shearing rate of poloidal flow induced by fishbone bursts is derived and verified numerically.

托卡马克等离子体中鱼骨架诱导的内部输运障碍的简单模型
在一些托卡马克装置中,已经观察到鱼骨状爆发与内部输运势垒(ITB)的形成密切相关。为了研究有助于触发 ITB 的关键物理参数,我们提出了一个包含鱼骨动力学和离子压力梯度演变的简单模型。鱼刺的时间演化由著名的捕食者-猎物模型描述。在每个迸发周期,高能粒子(EPs)与鱼骨发生共振作用,并从内部区域径向排出,形成径向电流。如果鱼刺循环频率大于极性流阻尼率,就会诱发补偿性的大体等离子体回流,从而产生极性流。当极环流的剪切力超过临界值时,湍流波动被抑制,大块离子压力梯度过渡到高约束状态。研究表明,这一过程只对 $q=1$ 表面内被困 EP 的沉积率敏感,而对其他参数不敏感。推导出了鱼骨爆裂诱导的极性流剪切率定量公式,并进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信