Crystal facet engineering of spinel NiCo2O4 with enhanced activity and water resistance for tuneable catalytic methane oxidation†

EES catalysis Pub Date : 2023-12-26 DOI:10.1039/D3EY00281K
Yash Boyjoo, Yonggang Jin, Xin Mao, Guangyu Zhao, Thomas Gengenbach, Aijun Du, Hua Guo and Jian Liu
{"title":"Crystal facet engineering of spinel NiCo2O4 with enhanced activity and water resistance for tuneable catalytic methane oxidation†","authors":"Yash Boyjoo, Yonggang Jin, Xin Mao, Guangyu Zhao, Thomas Gengenbach, Aijun Du, Hua Guo and Jian Liu","doi":"10.1039/D3EY00281K","DOIUrl":null,"url":null,"abstract":"<p >Spinel NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> are excellent catalysts for complete methane oxidation. Nevertheless, the spinel structure is thermally unstable and its activity is negatively affected by humidity. Herein, we report crystal facet engineering synthesis of spinel NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> hexagonal nanosheets with different exposed facets. Density functional theory (DFT) simulations predict that a more viable reaction mechanism for methane oxidation occurs on 112-NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> with {112} exposed facets compared with 111-NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> with {111} exposed facets. Detailed material characterization and catalytic oxidation testing verified the DFT results showing that 112-NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> has better thermal stability as well as higher catalytic activity towards methane oxidation than 111-NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small>. Conversely, 111-NiCo<small><sub>2</sub></small>O<small><sub>4</sub></small> has the enhanced water resistance of the two catalysts. DFT calculations suggest that OH groups tend to preferentially adsorb onto metal sites, which (1) reduces the number of active sites available and (2) makes CH<small><sub>4</sub></small> adsorption and activation a more arduous process. This study offers insights on the behavior of spinel oxide catalysts towards methane combustion in dry and humid conditions, further demonstrating that crystal facet engineering can be a practical strategy to tune the activity and water resistance of metal-oxide catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00281k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00281k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel NiCo2O4 are excellent catalysts for complete methane oxidation. Nevertheless, the spinel structure is thermally unstable and its activity is negatively affected by humidity. Herein, we report crystal facet engineering synthesis of spinel NiCo2O4 hexagonal nanosheets with different exposed facets. Density functional theory (DFT) simulations predict that a more viable reaction mechanism for methane oxidation occurs on 112-NiCo2O4 with {112} exposed facets compared with 111-NiCo2O4 with {111} exposed facets. Detailed material characterization and catalytic oxidation testing verified the DFT results showing that 112-NiCo2O4 has better thermal stability as well as higher catalytic activity towards methane oxidation than 111-NiCo2O4. Conversely, 111-NiCo2O4 has the enhanced water resistance of the two catalysts. DFT calculations suggest that OH groups tend to preferentially adsorb onto metal sites, which (1) reduces the number of active sites available and (2) makes CH4 adsorption and activation a more arduous process. This study offers insights on the behavior of spinel oxide catalysts towards methane combustion in dry and humid conditions, further demonstrating that crystal facet engineering can be a practical strategy to tune the activity and water resistance of metal-oxide catalysts.

Abstract Image

具有更高活性和耐水性的尖晶石镍钴氧化物晶面工程用于可调式催化甲烷氧化
尖晶石镍钴氧化物是完全氧化甲烷的优良催化剂。然而,尖晶石结构具有热不稳定性,而且其活性会受到湿度的负面影响。在此,我们报告了具有不同暴露面的尖晶石镍钴氧化物六方纳米片的晶面工程合成。密度泛函理论(DFT)模拟预测,与具有{1 1 1 1}暴露面的 111-NiCo2O4 相比,具有{1 1 2}暴露面的 112-NiCo2O4 发生甲烷氧化的反应机制更可行。详细的材料表征和催化氧化测试验证了 DFT 结果,表明 112-NiCo2O4 比 111-NiCo2O4 具有更好的热稳定性和更高的甲烷氧化催化活性。相反,111-NiCo2O4 在两种催化剂中具有更强的耐水性。DFT 计算表明,OH 基团倾向于优先吸附在金属位点上,这(1)减少了可用活性位点的数量,(2)使 CH4 的吸附和活化过程更加艰难。这项研究深入揭示了尖晶石氧化物催化剂在干燥和潮湿条件下燃烧甲烷的行为,进一步证明了晶面工程是调整金属氧化物催化剂活性和耐水性的一种实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信