{"title":"Development of the focal-plane CMOS detector for the GEO-X mission","authors":"Hiroshi Nakajima, Shotaro Nakamura, Koichi Hagino, Ayumi Kiuchi, Takuya Matsumoto, Tohya Yamagami, Tomokage Yoneyama, Junko S. Hiraga, Yuichiro Ezoe, Masaki Numazawa, Kumi Ishikawa, Hisashi Kitamura","doi":"10.1117/1.jatis.10.1.016001","DOIUrl":null,"url":null,"abstract":"We report a development status of a focal plane detector for the GEO-X (GEOspace X-ray imager) mission that will perform soft X-ray (≤2 keV) imaging spectroscopy of Earth’s magnetosphere from a micro satellite. The mission instrument consists of a microelectromechanical systems (MEMS) X-ray mirror and a focal plane detector. A sensor with fine positional resolution and moderate energy resolution in the energy band of 0.3 to 2 keV is required. Because the observing target is the magnetosphere around the day-side Earth, the visible-light background must be decreased by shortening the integration time for readout. To satisfy the above requirements, a high-speed X-ray CMOS sensor is being evaluated as a primary candidate for the detector. Irradiating the flight candidate sensor with monochromatic X-rays, we obtained the energy resolution of 205 eV (FWHM) at 6 keV by cooling the devices to −15°C. Radiation tolerance of the sensor, especially in terms of total dose effect, is investigated with 100 MeV proton. The amount of degradation of energy resolution is <50 eV up to 10 krad, which ensures that we will be able to track and calibrate the change of the line width in orbit.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.1.016001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
We report a development status of a focal plane detector for the GEO-X (GEOspace X-ray imager) mission that will perform soft X-ray (≤2 keV) imaging spectroscopy of Earth’s magnetosphere from a micro satellite. The mission instrument consists of a microelectromechanical systems (MEMS) X-ray mirror and a focal plane detector. A sensor with fine positional resolution and moderate energy resolution in the energy band of 0.3 to 2 keV is required. Because the observing target is the magnetosphere around the day-side Earth, the visible-light background must be decreased by shortening the integration time for readout. To satisfy the above requirements, a high-speed X-ray CMOS sensor is being evaluated as a primary candidate for the detector. Irradiating the flight candidate sensor with monochromatic X-rays, we obtained the energy resolution of 205 eV (FWHM) at 6 keV by cooling the devices to −15°C. Radiation tolerance of the sensor, especially in terms of total dose effect, is investigated with 100 MeV proton. The amount of degradation of energy resolution is <50 eV up to 10 krad, which ensures that we will be able to track and calibrate the change of the line width in orbit.
期刊介绍:
The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.