John R. N. Taylor, Henriëtte L. de Kock, Edna Makule, Bruce R. Hamaker, Peiman Milani
{"title":"Reduction in rancidity development in fortified whole-grain maize meal by hot-air drying of the grain","authors":"John R. N. Taylor, Henriëtte L. de Kock, Edna Makule, Bruce R. Hamaker, Peiman Milani","doi":"10.1002/cche.10750","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Objective</h3>\n \n <p>Maize is the major staple in sub-Saharan Africa. Whole-grain maize meal (WGMM) is highly susceptible to rancidity development. This work investigated whether rancidity development in micronutrient-fortified WGMM is retarded by drying the grain of safe moisture content to below this level using a commercial hot-air grain dryer before milling.</p>\n </section>\n \n <section>\n \n <h3> Findings</h3>\n \n <p>Fat acidity (hydrolytic rancidity measure) of WGMM from maize dried to 11.6% moisture and stored for 47 days at 40°C was only 61% of meal from the undried grain control (13.3% moisture). Peroxide value (oxidative rancidity measure) was only 53%. With the exception of riboflavin, there was no reduction in fortificant micronutrients during meal storage. Descriptive sensory evaluation indicated greater similarity to the control for stored maize meal and its stiff porridge from dried maize than for meal and porridge from undried maize.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Drying maize grain to 11.6% moisture substantially retards rancidity development in fortified WGMM development, probably by inactivating the grain's lipase and oxidative enzymes, providing a shelf life of at least 20 weeks at 25°C.</p>\n </section>\n \n <section>\n \n <h3> Significance and Novelty</h3>\n \n <p>This simple process to extend the shelf life of whole-grain maize meal is implementable by any mill with access to a hot-air grain dryer.</p>\n </section>\n </div>","PeriodicalId":9807,"journal":{"name":"Cereal Chemistry","volume":"101 2","pages":"323-333"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cche.10750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cereal Chemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cche.10750","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Maize is the major staple in sub-Saharan Africa. Whole-grain maize meal (WGMM) is highly susceptible to rancidity development. This work investigated whether rancidity development in micronutrient-fortified WGMM is retarded by drying the grain of safe moisture content to below this level using a commercial hot-air grain dryer before milling.
Findings
Fat acidity (hydrolytic rancidity measure) of WGMM from maize dried to 11.6% moisture and stored for 47 days at 40°C was only 61% of meal from the undried grain control (13.3% moisture). Peroxide value (oxidative rancidity measure) was only 53%. With the exception of riboflavin, there was no reduction in fortificant micronutrients during meal storage. Descriptive sensory evaluation indicated greater similarity to the control for stored maize meal and its stiff porridge from dried maize than for meal and porridge from undried maize.
Conclusions
Drying maize grain to 11.6% moisture substantially retards rancidity development in fortified WGMM development, probably by inactivating the grain's lipase and oxidative enzymes, providing a shelf life of at least 20 weeks at 25°C.
Significance and Novelty
This simple process to extend the shelf life of whole-grain maize meal is implementable by any mill with access to a hot-air grain dryer.
期刊介绍:
Cereal Chemistry publishes high-quality papers reporting novel research and significant conceptual advances in genetics, biotechnology, composition, processing, and utilization of cereal grains (barley, maize, millet, oats, rice, rye, sorghum, triticale, and wheat), pulses (beans, lentils, peas, etc.), oilseeds, and specialty crops (amaranth, flax, quinoa, etc.). Papers advancing grain science in relation to health, nutrition, pet and animal food, and safety, along with new methodologies, instrumentation, and analysis relating to these areas are welcome, as are research notes and topical review papers.
The journal generally does not accept papers that focus on nongrain ingredients, technology of a commercial or proprietary nature, or that confirm previous research without extending knowledge. Papers that describe product development should include discussion of underlying theoretical principles.