ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artifical intelligence.

Ismail Mese, Neslihan Gokmen Inan, Ozan Kocadagli, Artur Salmaslioglu, Duzgun Yildirim
{"title":"ChatGPT-assisted deep learning model for thyroid nodule analysis: beyond artifical intelligence.","authors":"Ismail Mese, Neslihan Gokmen Inan, Ozan Kocadagli, Artur Salmaslioglu, Duzgun Yildirim","doi":"10.11152/mu-4306","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>To develop a deep learning model, with the aid of ChatGPT, for thyroid nodules, utilizing ultrasound images. The cytopathology of the fine needle aspiration biopsy (FNAB) serves as the baseline.</p><p><strong>Material and methods: </strong>After securing IRB approval, a retrospective study was conducted, analyzing thyroid ultrasound images and FNAB results from 1,061 patients between January 2017 and January 2022. Detailed examinations of their demographic profiles, imaging characteristics, and cytological features were conducted. The images were used for training a deep learning model to identify various thyroid pathologies. ChatGPT assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting.</p><p><strong>Results: </strong>The model demonstrated an accuracy of 0.81 on the testing set, within a 95% confidence interval of 0.76 to 0.87. It presented remarkable results across thyroid subgroups, particularly in the benign category, with high precision (0.78) and recall (0.96), yielding a balanced F1-score of 0.86. The malignant category also displayed high precision (0.82) and recall (0.92), with an F1-score of 0.87.</p><p><strong>Conclusions: </strong>The study demonstrates the potential of artificial intelligence, particularly ChatGPT, in aiding the creation of robust deep learning models for medical image analysis.</p>","PeriodicalId":94138,"journal":{"name":"Medical ultrasonography","volume":"25 4","pages":"375-383"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11152/mu-4306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: To develop a deep learning model, with the aid of ChatGPT, for thyroid nodules, utilizing ultrasound images. The cytopathology of the fine needle aspiration biopsy (FNAB) serves as the baseline.

Material and methods: After securing IRB approval, a retrospective study was conducted, analyzing thyroid ultrasound images and FNAB results from 1,061 patients between January 2017 and January 2022. Detailed examinations of their demographic profiles, imaging characteristics, and cytological features were conducted. The images were used for training a deep learning model to identify various thyroid pathologies. ChatGPT assisted in developing this model by aiding in code writing, preprocessing, model optimization, and troubleshooting.

Results: The model demonstrated an accuracy of 0.81 on the testing set, within a 95% confidence interval of 0.76 to 0.87. It presented remarkable results across thyroid subgroups, particularly in the benign category, with high precision (0.78) and recall (0.96), yielding a balanced F1-score of 0.86. The malignant category also displayed high precision (0.82) and recall (0.92), with an F1-score of 0.87.

Conclusions: The study demonstrates the potential of artificial intelligence, particularly ChatGPT, in aiding the creation of robust deep learning models for medical image analysis.

用于甲状腺结节分析的 ChatGPT 辅助深度学习模型:超越人工智能。
目的:借助 ChatGPT,利用超声图像开发甲状腺结节的深度学习模型。以细针穿刺活检(FNAB)的细胞病理学为基线:在获得 IRB 批准后,进行了一项回顾性研究,分析了 2017 年 1 月至 2022 年 1 月期间 1061 名患者的甲状腺超声图像和 FNAB 结果。研究人员对这些患者的人口统计学特征、影像学特征和细胞学特征进行了详细检查。这些图像被用于训练一个深度学习模型,以识别各种甲状腺病变。ChatGPT 通过协助代码编写、预处理、模型优化和故障排除来协助开发该模型:该模型在测试集上的准确率为 0.81,95% 置信区间为 0.76 至 0.87。该模型在甲状腺亚组中取得了显著的结果,尤其是在良性类别中,精确度(0.78)和召回率(0.96)都很高,平衡的 F1 分数为 0.86。恶性类别也显示出较高的精确度(0.82)和召回率(0.92),F1 分数为 0.87:这项研究展示了人工智能(尤其是 ChatGPT)在帮助创建用于医学图像分析的强大深度学习模型方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信