{"title":"Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: Beyond parasympathetic function","authors":"Paul Grossman","doi":"10.1016/j.biopsycho.2023.108739","DOIUrl":null,"url":null,"abstract":"<div><p>Linchpin to the entire area of psychophysiological research and discussion of the vagus is the respiratory and cardiovascular phenomenon known as respiratory sinus arrhythmia (RSA; often synonymous with high-frequency heart-rate variability when it is specifically linked to respiratory frequency), i.e. rhythmic fluctuations in heart rate synchronized to inspiration and expiration. This article aims 1) to clarify concepts, terms and measures commonly employed during the last half century in the scientific literature, which relate vagal function to psychological processes and general aspects of health; and 2) to expand upon an earlier theoretical model, emphasizing the importance of RSA well beyond the current focus upon parasympathetic mechanisms. A close examination of RSA and its relations to the vagus may 1) dispel certain commonly held beliefs about associations between psychological functioning, RSA and the parasympathetic nervous system (for which the vagus nerve plays a major role), and 2) offer fresh perspectives about the likely functions and adaptive significance of RSA, as well as RSA’s relationship to vagal control. RSA is neither an invariably reliable index of cardiac vagal tone nor of central vagal outflow to the heart. The model here presented posits that RSA represents an evolutionarily entrenched, cardiovascular <em><strong>and</strong></em> respiratory phenomenon that significantly contributes to meeting continuously changing metabolic, energy and behavioral demands.</p></div>","PeriodicalId":55372,"journal":{"name":"Biological Psychology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301051123002594/pdfft?md5=81de4d2efea3d9f8712456e1f537b8c3&pid=1-s2.0-S0301051123002594-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301051123002594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Linchpin to the entire area of psychophysiological research and discussion of the vagus is the respiratory and cardiovascular phenomenon known as respiratory sinus arrhythmia (RSA; often synonymous with high-frequency heart-rate variability when it is specifically linked to respiratory frequency), i.e. rhythmic fluctuations in heart rate synchronized to inspiration and expiration. This article aims 1) to clarify concepts, terms and measures commonly employed during the last half century in the scientific literature, which relate vagal function to psychological processes and general aspects of health; and 2) to expand upon an earlier theoretical model, emphasizing the importance of RSA well beyond the current focus upon parasympathetic mechanisms. A close examination of RSA and its relations to the vagus may 1) dispel certain commonly held beliefs about associations between psychological functioning, RSA and the parasympathetic nervous system (for which the vagus nerve plays a major role), and 2) offer fresh perspectives about the likely functions and adaptive significance of RSA, as well as RSA’s relationship to vagal control. RSA is neither an invariably reliable index of cardiac vagal tone nor of central vagal outflow to the heart. The model here presented posits that RSA represents an evolutionarily entrenched, cardiovascular and respiratory phenomenon that significantly contributes to meeting continuously changing metabolic, energy and behavioral demands.
期刊介绍:
Biological Psychology publishes original scientific papers on the biological aspects of psychological states and processes. Biological aspects include electrophysiology and biochemical assessments during psychological experiments as well as biologically induced changes in psychological function. Psychological investigations based on biological theories are also of interest. All aspects of psychological functioning, including psychopathology, are germane.
The Journal concentrates on work with human subjects, but may consider work with animal subjects if conceptually related to issues in human biological psychology.