{"title":"Spiral groove bearing design for improving plasma skimming in rotary blood pumps.","authors":"Ming Jiang, Wataru Hijikata","doi":"10.1007/s10047-023-01422-y","DOIUrl":null,"url":null,"abstract":"<p><p>High-efficiency plasma skimming is hopeful to prevent hemolysis inside spiral groove bearings (SGBs) because it can exclude red blood cells from the ridge gap with a high shear force. However, no study reveals the shape design of SGBs to improve plasma skimming. Therefore, this study proposed and applied a groove design strategy to designing an optimal SGB for enhancing plasma skimming in a rotary blood pump (RBP). Initially, we proposed the design strategy that the shape of the groove for enhancing plasma skimming corresponds to the direction of blood flow in the ridge gap. Second, we visualized the cell flow in a specially designed experimental RBP to determine the direction of blood flow, which was helpful in the subsequent SGB design. Then, we created an SGB to provide superior plasma skimming and applied it to the experimental RBP. We evaluated the plasma skimming effect of SGB at rotational speeds ranging from 2400 to 3000 rpm and hematocrit conditions between 1% and 40%. At a 1% hematocrit, the plasma skimming efficiency for the entire SGB was greater than 95%. In all hematocrit conditions, the efficiency at the inner ridges of the SGB was greater than 80%. The results showed the designed SGB successfully induced excellent plasma skimming within ridge gaps. This study is the first to propose and apply a shape design strategy to generate excellent plasma skimming within an SGB. This study may contribute to the prevention of SGB hemolysis inside SGB for use in RBPs.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":"212-221"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-023-01422-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-efficiency plasma skimming is hopeful to prevent hemolysis inside spiral groove bearings (SGBs) because it can exclude red blood cells from the ridge gap with a high shear force. However, no study reveals the shape design of SGBs to improve plasma skimming. Therefore, this study proposed and applied a groove design strategy to designing an optimal SGB for enhancing plasma skimming in a rotary blood pump (RBP). Initially, we proposed the design strategy that the shape of the groove for enhancing plasma skimming corresponds to the direction of blood flow in the ridge gap. Second, we visualized the cell flow in a specially designed experimental RBP to determine the direction of blood flow, which was helpful in the subsequent SGB design. Then, we created an SGB to provide superior plasma skimming and applied it to the experimental RBP. We evaluated the plasma skimming effect of SGB at rotational speeds ranging from 2400 to 3000 rpm and hematocrit conditions between 1% and 40%. At a 1% hematocrit, the plasma skimming efficiency for the entire SGB was greater than 95%. In all hematocrit conditions, the efficiency at the inner ridges of the SGB was greater than 80%. The results showed the designed SGB successfully induced excellent plasma skimming within ridge gaps. This study is the first to propose and apply a shape design strategy to generate excellent plasma skimming within an SGB. This study may contribute to the prevention of SGB hemolysis inside SGB for use in RBPs.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.