Phospholipase Modulation of Synaptic Membrane Landscape: Driving Force Behind Memory Formation?

IF 6.9 2区 生物学 Q1 CELL BIOLOGY
Tristan P Wallis, Frédéric A Meunier
{"title":"Phospholipase Modulation of Synaptic Membrane Landscape: Driving Force Behind Memory Formation?","authors":"Tristan P Wallis, Frédéric A Meunier","doi":"10.1101/cshperspect.a041405","DOIUrl":null,"url":null,"abstract":"<p><p>The synapse is the communication unit of the brain, linking billions of neurons through trillions of synaptic connections. The lipid landscape of the synaptic membrane underpins neurotransmitter release through the exocytic fusion of neurotransmitter-containing vesicles, endocytic recycling of these synaptic vesicles, and the postsynaptic response following binding of the neurotransmitter to specialized receptors. How the connected brain can learn and acquire memories through synaptic plasticity is unresolved. Phospholipases, and especially the phospholipase A1 isoform DDHD2, have recently been shown to play a critical role in memory acquisition through the generation of saturated free fatty acids such as myristic and palmitic acids. This emerging synaptic plasticity pathway suggests that phospholipases cannot only respond to synaptic activity by altering the phospholipid landscape but also contribute to the establishment of long-term memories in our brain.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982704/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The synapse is the communication unit of the brain, linking billions of neurons through trillions of synaptic connections. The lipid landscape of the synaptic membrane underpins neurotransmitter release through the exocytic fusion of neurotransmitter-containing vesicles, endocytic recycling of these synaptic vesicles, and the postsynaptic response following binding of the neurotransmitter to specialized receptors. How the connected brain can learn and acquire memories through synaptic plasticity is unresolved. Phospholipases, and especially the phospholipase A1 isoform DDHD2, have recently been shown to play a critical role in memory acquisition through the generation of saturated free fatty acids such as myristic and palmitic acids. This emerging synaptic plasticity pathway suggests that phospholipases cannot only respond to synaptic activity by altering the phospholipid landscape but also contribute to the establishment of long-term memories in our brain.

磷脂酶对突触膜景观的调节:记忆形成背后的驱动力?
突触是大脑的通信单元,通过数万亿个突触连接将数十亿个神经元联系在一起。突触膜的脂质结构通过含神经递质小泡的外细胞融合、这些突触小泡的内细胞再循环以及神经递质与特异受体结合后的突触后反应来支持神经递质的释放。连通的大脑如何通过突触可塑性学习和获得记忆,目前尚无定论。磷脂酶,尤其是磷脂酶 A1 同工型 DDHD2,最近被证明通过生成饱和游离脂肪酸(如肉豆蔻酸和棕榈酸),在记忆获取过程中发挥关键作用。这种新出现的突触可塑性途径表明,磷脂酶不仅能通过改变磷脂结构对突触活动做出反应,而且还有助于在我们的大脑中建立长期记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信