{"title":"Development and Characterization of Novel Chitosan-Coated Curcumin Nanophytosomes for Treating Drug-Resistant Malaria.","authors":"Bhargav Eranti, Padmanabha Reddy Yiragamreddy, Koteshwara Kunnatur Balasundara","doi":"10.1089/adt.2023.064","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. <i>In silico</i> molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing <i>Plasmodium falciparum</i> parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The <i>in vitro</i> drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC<sub>50</sub> values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further <i>in vivo</i> antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.</p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":"18-27"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2023.064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. In silico molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing Plasmodium falciparum parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The in vitro drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC50 values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further in vivo antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts